-
Notifications
You must be signed in to change notification settings - Fork 91
/
webui.py
70 lines (58 loc) · 2.66 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import gradio as gr
from gradio import components
import os
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def tts(model_path, config_path, text):
model_path = './logs/' + model_path
config_path = './configs/' + config_path
hps = utils.get_hparams_from_file(config_path)
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:
posterior_channels = 80
hps.data.use_mel_posterior_encoder = True
else:
posterior_channels = hps.data.filter_length // 2 + 1
hps.data.use_mel_posterior_encoder = False
net_g = SynthesizerTrn(
len(symbols),
posterior_channels,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None)
stn_tst = get_text(text, hps)
x_tst = stn_tst.cuda().unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
with torch.no_grad():
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
output_wav_path = "output.wav"
write(output_wav_path, hps.data.sampling_rate, audio)
return output_wav_path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default=None, help='Path to the model file.')
parser.add_argument('--config_path', type=str, default=None, help='Path to the config file.')
args = parser.parse_args()
model_files = [f for f in os.listdir('./logs/') if f.endswith('.pth')]
model_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]), reverse=True)
config_files = [f for f in os.listdir('./configs/') if f.endswith('.json')]
default_model_file = args.model_path if args.model_path else (model_files[0] if model_files else None)
default_config_file = args.config_path if args.config_path else 'config.json'
gr.Interface(
fn=tts,
inputs=[components.Dropdown(model_files,value=default_model_file, label="Model File"), components.Dropdown(config_files,value=default_config_file, label="Config File"), components.Textbox(label="Text Input")],
outputs=components.Audio(type='filepath', label="Generated Speech"),
live=False
).launch()