Outlier Detection Tools for Functional Data Analysis
`fdaoutlier` is a collection of outlier detectiontools for functional data analysis. Methods implemented include directional outlyingness, MS-plot, total variation depth, and sequential transformations among others.
You can install the current version of fdaoutliers from CRAN with:
install.packages("fdaoutlier")
or the latest the development version from GitHub with:
devtools::install_github("otsegun/fdaoutlier")
Generate some functional data with magnitude outliers:
library(fdaoutlier)
simdata <- simulation_model1(plot = T, seed = 1)
dim(simdata$data)
#> [1] 100 50
Next apply the msplot of Dai & Genton (2018)
ms <- msplot(simdata$data)
ms$outliers
#> [1] 4 7 17 26 29 55 62 66 76
simdata$true_outliers
#> [1] 4 7 17 55 66
- MS-Plot (Dai & Genton, 2018)
- TVDMSS (Huang & Sun, 2019)
- Extremal depth (Narisetty & Nair, 2016)
- Extreme rank length depth (Myllymäki et al., 2017; Dai et al., 2020)
- Directional quantile (Myllymäki et al., 2017; Dai et al., 2020)
- Fast band depth and modified band depth (Sun et al., 2012)
- Directional Outlyingness (Dai & Genton, 2019)
- Sequential transformation (Dai et al., 2020)
Kindly open an issue using Github issues.