diff --git a/docs/src/CommutativeAlgebra/rings.md b/docs/src/CommutativeAlgebra/rings.md index aa09ec1d811b..d9ea584c43b9 100644 --- a/docs/src/CommutativeAlgebra/rings.md +++ b/docs/src/CommutativeAlgebra/rings.md @@ -405,7 +405,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]) (Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y]) julia> B = MPolyBuildCtx(R) -Builder for an element of Multivariate polynomial ring in 2 variables over QQ +Builder for an element of multivariate polynomial ring julia> for i = 1:5 push_term!(B, QQ(i), [i, i-1]) end diff --git a/docs/src/NumberTheory/galois.md b/docs/src/NumberTheory/galois.md index 9294ab41c1b8..0d878cbbd3f8 100644 --- a/docs/src/NumberTheory/galois.md +++ b/docs/src/NumberTheory/galois.md @@ -96,10 +96,10 @@ julia> F, a = function_field(x^6 + 108*t^2 + 108*t + 27); julia> subfields(F) 4-element Vector{Any}: - (Function Field over Rational field with defining polynomial a^3 + 54*t + 27, (1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2)) - (Function Field over Rational field with defining polynomial a^2 + 108*t^2 + 108*t + 27, _a^3) - (Function Field over Rational field with defining polynomial a^3 - 108*t^2 - 108*t - 27, -_a^2) - (Function Field over Rational field with defining polynomial a^3 - 54*t - 27, (-1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2)) + (Function Field over QQ with defining polynomial a^3 + 54*t + 27, (1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2)) + (Function Field over QQ with defining polynomial a^2 + 108*t^2 + 108*t + 27, _a^3) + (Function Field over QQ with defining polynomial a^3 - 108*t^2 - 108*t - 27, -_a^2) + (Function Field over QQ with defining polynomial a^3 - 54*t - 27, (-1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2)) julia> galois_group(F) (Permutation group of degree 6 and order 6, Galois context for s^6 + 108*t^2 + 540*t + 675) diff --git a/experimental/ModStd/src/ModStdQt.jl b/experimental/ModStd/src/ModStdQt.jl index b4268bc519bd..20f36b48a9e1 100644 --- a/experimental/ModStd/src/ModStdQt.jl +++ b/experimental/ModStd/src/ModStdQt.jl @@ -591,7 +591,7 @@ julia> f = factor_absolute((X[1]^2+a[1]*X[2]^2)*(X[1]+2*X[2]+3*a[1]+4*a[2])) julia> parent(f[3][1]) Multivariate polynomial ring in 2 variables X[1], X[2] - over fraction field of multivariate polynomial ring + over fraction field of Qa julia> parent(f[2][1]) Multivariate polynomial ring in 2 variables X[1], X[2] diff --git a/experimental/Schemes/CoveredProjectiveSchemes.jl b/experimental/Schemes/CoveredProjectiveSchemes.jl index 4a17ec3edcf3..6b56b606d78d 100644 --- a/experimental/Schemes/CoveredProjectiveSchemes.jl +++ b/experimental/Schemes/CoveredProjectiveSchemes.jl @@ -311,7 +311,7 @@ julia> R, (x,y,z) = QQ["x", "y", "z"]; julia> Oscar.empty_covered_projective_scheme(R) Relative projective scheme - over empty covered scheme over multivariate polynomial ring + over empty covered scheme over R covered with 0 projective patches ``` """ diff --git a/experimental/Schemes/duValSing.jl b/experimental/Schemes/duValSing.jl index 5838df813b9e..fa6b7bb4d9d5 100644 --- a/experimental/Schemes/duValSing.jl +++ b/experimental/Schemes/duValSing.jl @@ -14,7 +14,7 @@ Ideal generated by x^2 + y^3 + z^4 julia> Rq, _ = quo(R,I) -(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq) +(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq) julia> X = spec(Rq) Spectrum @@ -78,7 +78,7 @@ Ideal generated by x^2 + y^3 + z^4 julia> Rq, _ = quo(R,I) -(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq) +(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq) julia> J = ideal(R,[x,y,z,w]) Ideal generated by @@ -158,7 +158,7 @@ Ideal generated by x^2 + y^3 + z^4 julia> Rq, _ = quo(R,I) -(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq) +(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq) julia> J = ideal(R,[x,y,z,w]) Ideal generated by diff --git a/src/Combinatorics/SimplicialComplexes.jl b/src/Combinatorics/SimplicialComplexes.jl index 1edd796bcb98..e00d6a293045 100644 --- a/src/Combinatorics/SimplicialComplexes.jl +++ b/src/Combinatorics/SimplicialComplexes.jl @@ -370,7 +370,7 @@ Return the Stanley-Reisner ring of the abstract simplicial complex `K`, as a quo julia> R, _ = ZZ["a","b","c","d","e","f"]; julia> stanley_reisner_ring(R, real_projective_plane()) -(Quotient of multivariate polynomial ring by ideal (a*b*c, a*b*d, a*e*f, b*e*f, a*c*f, a*d*e, c*d*e, c*d*f, b*c*e, b*d*f), Map: multivariate polynomial ring -> quotient of multivariate polynomial ring) +(Quotient of multivariate polynomial ring by ideal (a*b*c, a*b*d, a*e*f, b*e*f, a*c*f, a*d*e, c*d*e, c*d*f, b*c*e, b*d*f), Map: R -> quotient of multivariate polynomial ring) ``` """ stanley_reisner_ring(R::MPolyRing, K::SimplicialComplex) = quo(R, stanley_reisner_ideal(R, K)) diff --git a/src/Modules/ModuleTypes.jl b/src/Modules/ModuleTypes.jl index a2416d45c949..b771dfac76a2 100644 --- a/src/Modules/ModuleTypes.jl +++ b/src/Modules/ModuleTypes.jl @@ -116,7 +116,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]) (Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y]) julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 2 variables over QQ +Free module of rank 3 over R julia> f = F(sparse_row(R, [(1,x),(3,y)])) x*e[1] + y*e[3] diff --git a/src/Modules/UngradedModules/FreeMod.jl b/src/Modules/UngradedModules/FreeMod.jl index 86c3a881f3f5..e040f69abb42 100644 --- a/src/Modules/UngradedModules/FreeMod.jl +++ b/src/Modules/UngradedModules/FreeMod.jl @@ -37,7 +37,7 @@ The string `name` specifies how the basis vectors are printed. julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]); julia> FR = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> x*FR[1] x*e[1] @@ -49,7 +49,7 @@ julia> U = complement_of_prime_ideal(P); julia> RL, _ = localization(R, U); julia> FRL = free_module(RL, 2, "f") -Free module of rank 2 over Localization of multivariate polynomial ring in 3 variables over QQ at complement of prime ideal (x, y, z) +Free module of rank 2 over Localization of R at complement of prime ideal (x, y, z) julia> RL(x)*FRL[1] x*f[1] diff --git a/src/Modules/UngradedModules/FreeModElem.jl b/src/Modules/UngradedModules/FreeModElem.jl index ea29e58f9ba1..70e67c8d331c 100644 --- a/src/Modules/UngradedModules/FreeModElem.jl +++ b/src/Modules/UngradedModules/FreeModElem.jl @@ -84,7 +84,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]) (Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y]) julia> F = FreeMod(R,3) -Free module of rank 3 over Multivariate polynomial ring in 2 variables over QQ +Free module of rank 3 over R julia> f = x*gen(F,1)+y*gen(F,3) x*e[1] + y*e[3] diff --git a/src/Modules/UngradedModules/FreeModuleHom.jl b/src/Modules/UngradedModules/FreeModuleHom.jl index 7053cb615649..569df691993a 100644 --- a/src/Modules/UngradedModules/FreeModuleHom.jl +++ b/src/Modules/UngradedModules/FreeModuleHom.jl @@ -42,10 +42,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R julia> G = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]]; @@ -101,10 +101,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R julia> G = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]] 3-element Vector{FreeModElem{QQMPolyRingElem}}: @@ -116,10 +116,10 @@ julia> a = hom(F, G, V) Map with following data Domain: ======= -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R Codomain: ========= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> a(F[2]) x*e[1] + y*e[2] @@ -133,10 +133,10 @@ julia> b = hom(F, G, B) Map with following data Domain: ======= -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R Codomain: ========= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> a == b true @@ -325,10 +325,10 @@ that converts elements from $S$ into morphisms $F \to G$. julia> R, _ = polynomial_ring(QQ, ["x", "y", "z"]); julia> F1 = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R julia> F2 = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> V, f = hom(F1, F2) (hom of (F1, F2), Map: V -> set of all homomorphisms from F1 to F2) @@ -337,10 +337,10 @@ julia> f(V[1]) Map with following data Domain: ======= -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R Codomain: ========= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R ``` @@ -414,10 +414,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R julia> G = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]]; @@ -434,7 +434,7 @@ Submodule with 1 generator represented as subquotient with no relations. Codomain: ========= -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ) +Free module of rank 3 over R) ``` ```jldoctest @@ -546,10 +546,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R julia> G = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]]; @@ -570,7 +570,7 @@ Submodule with 3 generators represented as subquotient with no relations. Codomain: ========= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ) +Free module of rank 2 over R) ``` ```jldoctest diff --git a/src/Modules/UngradedModules/FreeResolutions.jl b/src/Modules/UngradedModules/FreeResolutions.jl index de1e53c24f87..672d8c4696e4 100644 --- a/src/Modules/UngradedModules/FreeResolutions.jl +++ b/src/Modules/UngradedModules/FreeResolutions.jl @@ -284,7 +284,7 @@ julia> is_complete(fr) false julia> fr[4] -Free module of rank 0 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 0 over R julia> fr Free resolution of M diff --git a/src/Modules/UngradedModules/Presentation.jl b/src/Modules/UngradedModules/Presentation.jl index c30a9d92f9f1..9bf8031f91c1 100644 --- a/src/Modules/UngradedModules/Presentation.jl +++ b/src/Modules/UngradedModules/Presentation.jl @@ -432,7 +432,7 @@ If `task = :only_morphism`, return only an isomorphism. julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]); julia> F = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> present_as_cokernel(F) Submodule with 2 generators @@ -444,7 +444,7 @@ julia> present_as_cokernel(F, :only_morphism) Map with following data Domain: ======= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R Codomain: ========= Submodule with 2 generators diff --git a/src/Modules/UngradedModules/SubQuoHom.jl b/src/Modules/UngradedModules/SubQuoHom.jl index 54b833e5e4a3..bfa2221091c9 100644 --- a/src/Modules/UngradedModules/SubQuoHom.jl +++ b/src/Modules/UngradedModules/SubQuoHom.jl @@ -121,7 +121,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> A = R[x; y] [x] @@ -187,7 +187,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> A = R[x; y]; @@ -383,7 +383,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> A = R[x; y] [x] @@ -602,7 +602,7 @@ Submodule with 3 generators represented as subquotient with no relations. Codomain: ========= -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R ``` ```jldoctest @@ -780,7 +780,7 @@ Submodule with 1 generator represented as subquotient with no relations. Codomain: ========= -Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 3 over R ``` ```jldoctest diff --git a/src/Modules/UngradedModules/SubquoModule.jl b/src/Modules/UngradedModules/SubquoModule.jl index 83821631c1d2..8c66a77c44a6 100644 --- a/src/Modules/UngradedModules/SubquoModule.jl +++ b/src/Modules/UngradedModules/SubquoModule.jl @@ -42,7 +42,7 @@ julia> R, (x,y) = polynomial_ring(QQ, ["x", "y"]) (Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y]) julia> F = FreeMod(R,2) -Free module of rank 2 over Multivariate polynomial ring in 2 variables over QQ +Free module of rank 2 over R julia> O = [x*F[1]+F[2],y*F[2]] 2-element Vector{FreeModElem{QQMPolyRingElem}}: @@ -187,7 +187,7 @@ free module homomorphisms with codomain `F` represented by `A` and `B`. julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]); julia> FR = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AR = R[x; y] [x] @@ -214,7 +214,7 @@ julia> U = complement_of_prime_ideal(P); julia> RL, _ = localization(R, U); julia> FRL = free_module(RL, 1) -Free module of rank 1 over Localization of multivariate polynomial ring in 3 variables over QQ at complement of prime ideal (x, y, z) +Free module of rank 1 over Localization of R at complement of prime ideal (x, y, z) julia> ARL = RL[x; y] [x] @@ -571,7 +571,7 @@ Return the cokernel of `A` as an object of type `SubquoModule` with ambient free julia> R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]); julia> F = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> A = R[x y; 2*x^2 3*y^2] [ x y] @@ -658,7 +658,7 @@ Return the image of `A` as an object of type `SubquoModule` with ambient free mo julia> R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]); julia> F = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> A = R[x y; 2*x^2 3*y^2] [ x y] @@ -838,7 +838,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AM = R[x;] [x] @@ -966,7 +966,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AM = R[x;] [x] @@ -1165,7 +1165,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AM = R[x;] [x] @@ -1347,7 +1347,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AM = R[x;] [x] @@ -1450,7 +1450,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> AM = R[x;] [x] diff --git a/src/Modules/UngradedModules/SubquoModuleElem.jl b/src/Modules/UngradedModules/SubquoModuleElem.jl index 55e3fd35036d..5e25c8d06ab1 100644 --- a/src/Modules/UngradedModules/SubquoModuleElem.jl +++ b/src/Modules/UngradedModules/SubquoModuleElem.jl @@ -624,7 +624,7 @@ Submodule with 3 generators represented as subquotient with no relations. Codomain: ========= -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R ``` """ function sub(M::ModuleFP{T}, V::Vector{<:ModuleFPElem{T}}; cache_morphism::Bool=false) where T @@ -822,7 +822,7 @@ julia> proj Map with following data Domain: ======= -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R Codomain: ========= Subquotient of Submodule with 1 generator @@ -984,7 +984,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> A = R[x^2+y^2;] [x^2 + y^2] @@ -1040,7 +1040,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> F = free_module(R, 1) -Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 1 over R julia> A = R[x; y] [x] diff --git a/src/Rings/MPolyMap/MPolyRing.jl b/src/Rings/MPolyMap/MPolyRing.jl index e8135a7f8c73..fd9ac903c1d6 100644 --- a/src/Rings/MPolyMap/MPolyRing.jl +++ b/src/Rings/MPolyMap/MPolyRing.jl @@ -53,8 +53,8 @@ julia> R, (x, y) = polynomial_ring(K, ["x", "y"]); julia> F = hom(R, R, z -> z^2, [y, x]) Ring homomorphism - from multivariate polynomial ring in 2 variables over GF(2, 2) - to multivariate polynomial ring in 2 variables over GF(2, 2) + from multivariate polynomial ring in 2 variables over K + to multivariate polynomial ring in 2 variables over K defined by x -> y y -> x diff --git a/src/Rings/MPolyQuo.jl b/src/Rings/MPolyQuo.jl index 04c386e3f17c..24ad06baf7ca 100644 --- a/src/Rings/MPolyQuo.jl +++ b/src/Rings/MPolyQuo.jl @@ -332,7 +332,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> A, _ = quo(R, ideal(R, [y-x^2, z-x^3])) -(Quotient of multivariate polynomial ring by ideal (-x^2 + y, -x^3 + z), Map: multivariate polynomial ring -> A) +(Quotient of multivariate polynomial ring by ideal (-x^2 + y, -x^3 + z), Map: R -> A) julia> a = ideal(A, [x-y]) Ideal generated by @@ -361,7 +361,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]) (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z]) julia> A, _ = quo(R, ideal(R, [y-x^2, z-x^3])) -(Quotient of multivariate polynomial ring by ideal (-x^2 + y, -x^3 + z), Map: multivariate polynomial ring -> A) +(Quotient of multivariate polynomial ring by ideal (-x^2 + y, -x^3 + z), Map: R -> A) julia> a = ideal(A, [x-y]) Ideal generated by @@ -1595,8 +1595,7 @@ julia> HC = gens(L[1]); julia> EMB = L[2] Map defined by a julia-function with inverse - from quotient space over: - Rational field with 7 generators and no relations + from quotient space over QQ with 7 generators and no relations to quotient of multivariate polynomial ring by ideal (-x*z + y^2, -w*z + x*y, -w*y + x^2) julia> for i in 1:length(HC) println(EMB(HC[i])) end @@ -1647,8 +1646,7 @@ julia> HC = gens(L[1]); julia> EMB = L[2] Map defined by a julia-function with inverse - from quotient space over: - Rational field with 7 generators and no relations + from quotient space over QQ with 7 generators and no relations to quotient of multivariate polynomial ring by ideal (x[1]*y[1] - x[2]*y[2]) julia> for i in 1:length(HC) println(EMB(HC[i])) end diff --git a/src/Rings/mpoly-localizations.jl b/src/Rings/mpoly-localizations.jl index bdae06c95ac3..c64ce0297e66 100644 --- a/src/Rings/mpoly-localizations.jl +++ b/src/Rings/mpoly-localizations.jl @@ -1823,7 +1823,7 @@ Complement in multivariate polynomial ring in 2 variables over QQ julia> L, _ = localization(R, U) -(Localization of multivariate polynomial ring in 2 variables over QQ at complement of prime ideal (x, y^2 + 1), Hom: multivariate polynomial ring -> localized ring) +(Localization of multivariate polynomial ring in 2 variables over QQ at complement of prime ideal (x, y^2 + 1), Hom: R -> localized ring) julia> J = ideal(L,[y*(x^2+(y^2+1)^2)]) Ideal generated by diff --git a/src/Rings/orderings.jl b/src/Rings/orderings.jl index ac309e07c25f..c038c3f83dd5 100644 --- a/src/Rings/orderings.jl +++ b/src/Rings/orderings.jl @@ -1571,7 +1571,7 @@ julia> cmp(lex([x,y,z]), z, one(R)) 1 julia> F = free_module(R, 2) -Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ +Free module of rank 2 over R julia> cmp(lex(R)*invlex(F), F[1], F[2]) -1 @@ -1931,7 +1931,7 @@ Return the ring ordering induced by `ord`. julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"]); julia> F = free_module(R, 3) -Free module of rank 3 over Multivariate polynomial ring in 4 variables over QQ +Free module of rank 3 over R julia> o = invlex(gens(F))*degrevlex(R) invlex([gen(1), gen(2), gen(3)])*degrevlex([w, x, y, z])