Skip to content

Commit

Permalink
Merge pull request #5125 from openjournals/joss.06326
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 13, 2024
2 parents ec10adc + acfee1a commit 31f2537
Show file tree
Hide file tree
Showing 4 changed files with 932 additions and 0 deletions.
314 changes: 314 additions & 0 deletions joss.06326/10.21105.joss.06326.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240313T193609-27fc01c0bd885340c576af853ba600367661fecc</doi_batch_id>
<timestamp>20240313193609</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PyProximal - scalable convex optimization in
Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Matteo</given_name>
<surname>Ravasi</surname>
<ORCID>https://orcid.org/0000-0003-0020-2721</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Marcus Valtonen</given_name>
<surname>Örnhag</surname>
<ORCID>https://orcid.org/0000-0001-8687-227X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Nick</given_name>
<surname>Luiken</surname>
<ORCID>https://orcid.org/0000-0003-3307-1748</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Olivier</given_name>
<surname>Leblanc</surname>
<ORCID>https://orcid.org/0000-0003-3641-1875</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Eneko</given_name>
<surname>Uruñuela</surname>
<ORCID>https://orcid.org/0000-0001-6849-9088</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>13</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6326</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06326</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10805997</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6326</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06326</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06326</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06326.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Ravasi:2020">
<article_title>PyLops - A linear-operator Python library for
scalable algebra and optimization</article_title>
<author>Ravasi</author>
<journal_title>SoftwareX</journal_title>
<volume>11</volume>
<doi>10.1016/j.softx.2019.100361</doi>
<cYear>2020</cYear>
<unstructured_citation>Ravasi, M., &amp; Vasconcelos, I.
(2020). PyLops - A linear-operator Python library for scalable algebra
and optimization. SoftwareX, 11.
https://doi.org/10.1016/j.softx.2019.100361</unstructured_citation>
</citation>
<citation key="Parikh:2013">
<author>Parikh</author>
<doi>10.1561/2400000003</doi>
<cYear>2013</cYear>
<unstructured_citation>Parikh, N. (2013). Foundations;
Trends in Optimization.
https://doi.org/10.1561/2400000003</unstructured_citation>
</citation>
<citation key="Combettes:2011">
<volume_title>Proximal splitting methods in signal
processing</volume_title>
<author>Combettes</author>
<doi>10.1007/978-1-4419-9569-8_10</doi>
<cYear>2011</cYear>
<unstructured_citation>Combettes, P., &amp; Pesquet, J.-C.
(2011). Proximal splitting methods in signal processing. Springer
Optimization; Its Applications.
https://doi.org/10.1007/978-1-4419-9569-8_10</unstructured_citation>
</citation>
<citation key="Boyd:2011">
<article_title>Distributed optimization and statistical
learning via the alternating direction method of
multipliers</article_title>
<author>Boyd</author>
<journal_title>Foundations and Trends in Machine
Learning</journal_title>
<volume>3</volume>
<doi>10.1561/2200000016</doi>
<cYear>2011</cYear>
<unstructured_citation>Boyd, S., Parikh, N., Chu, E.,
Peleato, B., &amp; Eckstein, J. (2011). Distributed optimization and
statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning, 3.
https://doi.org/10.1561/2200000016</unstructured_citation>
</citation>
<citation key="Chambolle:2011">
<article_title>A first-order primal-dual algorithm for
convex problems with applications to imaging</article_title>
<author>Chambolle</author>
<journal_title>Journal of Mathematical Imaging and
Vision</journal_title>
<volume>40</volume>
<doi>10.1007/s10851-010-0251-1</doi>
<cYear>2011</cYear>
<unstructured_citation>Chambolle, A., &amp; Pock, T. (2011).
A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40.
https://doi.org/10.1007/s10851-010-0251-1</unstructured_citation>
</citation>
<citation key="Ravasi:2022">
<article_title>A joint inversion-segmentation approach to
assisted seismic interpretation</article_title>
<author>Ravasi</author>
<journal_title>Geophysical Journal
International</journal_title>
<volume>228</volume>
<doi>10.1093/gji/ggab388</doi>
<cYear>2022</cYear>
<unstructured_citation>Ravasi, M., &amp; Birnie, C. (2022).
A joint inversion-segmentation approach to assisted seismic
interpretation. Geophysical Journal International, 228.
https://doi.org/10.1093/gji/ggab388</unstructured_citation>
</citation>
<citation key="Venkatakrishnan:2013">
<article_title>Plug-and-Play Priors for Model Based
Reconstruction</article_title>
<author>Venkatakrishnan</author>
<journal_title>2013 IEEE Global Conference on Signal and
Information Processing</journal_title>
<doi>10.1109/GlobalSIP.2013.6737048</doi>
<cYear>2013</cYear>
<unstructured_citation>Venkatakrishnan, S. V., Bouman, C.
A., &amp; Wohlberg, B. (2013). Plug-and-Play Priors for Model Based
Reconstruction. 2013 IEEE Global Conference on Signal and Information
Processing.
https://doi.org/10.1109/GlobalSIP.2013.6737048</unstructured_citation>
</citation>
<citation key="Romero:2023">
<article_title>Seeing through the CO2 plume: Joint
inversion-segmentation of the Sleipner 4D seismic data
set</article_title>
<author>Romero</author>
<journal_title>The Leading Edge</journal_title>
<volume>42</volume>
<doi>10.1190/tle42070457.1</doi>
<cYear>2023</cYear>
<unstructured_citation>Romero, J., Luiken, N., &amp; Ravasi,
M. (2023). Seeing through the CO2 plume: Joint inversion-segmentation of
the Sleipner 4D seismic data set. The Leading Edge, 42.
https://doi.org/10.1190/tle42070457.1</unstructured_citation>
</citation>
<citation key="Romero:2022">
<article_title>Plug and Play Post-Stack Seismic Inversion
with CNN-Based Denoisers</article_title>
<author>Romero</author>
<journal_title>Second EAGE Subsurface Intelligence
Workshop</journal_title>
<volume>1</volume>
<doi>10.3997/2214-4609.2022616015</doi>
<cYear>2022</cYear>
<unstructured_citation>Romero, J., Luiken, M. C. N., &amp;
Ravasi, M. (2022). Plug and Play Post-Stack Seismic Inversion with
CNN-Based Denoisers. Second EAGE Subsurface Intelligence Workshop, 1.
https://doi.org/10.3997/2214-4609.2022616015</unstructured_citation>
</citation>
<citation key="Leblanc:2023">
<article_title>Interferometric Lensless Imaging: Rank-one
Projections of Image Frequencies with Speckle
Illuminations</article_title>
<author>Leblanc</author>
<journal_title>ArXiv e-prints</journal_title>
<doi>10.1109/tci.2024.3359178</doi>
<cYear>2023</cYear>
<unstructured_citation>Leblanc, O., Hofer, M., Sivankutty,
S., Rigneault, H., &amp; Jacques, L. (2023). Interferometric Lensless
Imaging: Rank-one Projections of Image Frequencies with Speckle
Illuminations. ArXiv e-Prints.
https://doi.org/10.1109/tci.2024.3359178</unstructured_citation>
</citation>
<citation key="Ravasi:2021">
<article_title>Leveraging GPUs for matrix-free optimization
with PyLops</article_title>
<author>Ravasi</author>
<journal_title>Fifth EAGE Workshop on High Performance
Computing for Upstream</journal_title>
<volume>1</volume>
<doi>10.3997/2214-4609.2021612003</doi>
<cYear>2021</cYear>
<unstructured_citation>Ravasi, M. (2021). Leveraging GPUs
for matrix-free optimization with PyLops. Fifth EAGE Workshop on High
Performance Computing for Upstream, 1.
https://doi.org/10.3997/2214-4609.2021612003</unstructured_citation>
</citation>
<citation key="Maheswaranathan">
<article_title>Proxalgs</article_title>
<author>Maheswaranathan</author>
<cYear>2019</cYear>
<unstructured_citation>Maheswaranathan, N., Zapp, S., &amp;
Poole, B. (2019). Proxalgs.
https://github.com/ganguli-lab/proxalgs/</unstructured_citation>
</citation>
<citation key="Melchior">
<article_title>Block-simultaneous direction method of
multipliers: a proximal primal-dual splitting algorithm for nonconvex
problems with multiple constraints</article_title>
<author>Moolekamp</author>
<journal_title>Optimization and Engineering</journal_title>
<volume>19</volume>
<doi>10.1007/s11081-018-9380-y</doi>
<cYear>2018</cYear>
<unstructured_citation>Moolekamp, F., &amp; Melchior, P.
(2018). Block-simultaneous direction method of multipliers: a proximal
primal-dual splitting algorithm for nonconvex problems with multiple
constraints. Optimization and Engineering, 19.
https://doi.org/10.1007/s11081-018-9380-y</unstructured_citation>
</citation>
<citation key="Chierchia">
<article_title>The proximity operator
repository</article_title>
<author>Chierchia</author>
<cYear>2024</cYear>
<unstructured_citation>Chierchia, G., Chouzenoux, E.,
Combettes, P. L., &amp; Pesquet, J.-C. (2024). The proximity operator
repository. https://proximity-operator.net/</unstructured_citation>
</citation>
<citation key="pyxu-framework">
<article_title>Pyxu-org/pyxu: pyxu</article_title>
<author>Simeoni</author>
<doi>10.5281/zenodo.4486431</doi>
<cYear>2024</cYear>
<unstructured_citation>Simeoni, M., Kashani, S.,
Rué-Queralt, J., &amp; Developers, P. (2024). Pyxu-org/pyxu: pyxu.
Zenodo. https://doi.org/10.5281/zenodo.4486431</unstructured_citation>
</citation>
<citation key="Heide:2016">
<article_title>ProxImaL: Efficient image optimization using
proximal algorithms</article_title>
<author>Heide</author>
<issue>4</issue>
<volume>35</volume>
<doi>10.1145/2897824.2925875</doi>
<cYear>2016</cYear>
<unstructured_citation>Heide, F., Diamond, S., Nießner, M.,
Ragan-Kelley, J., Heidrich, W., &amp; Wetzstein, G. (2016). ProxImaL:
Efficient image optimization using proximal algorithms. 35(4).
https://doi.org/10.1145/2897824.2925875</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 31f2537

Please sign in to comment.