-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
blip-base_8xb16_refcoco.py
62 lines (58 loc) · 1.55 KB
/
blip-base_8xb16_refcoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_ = [
'../_base_/datasets/refcoco.py',
'../_base_/default_runtime.py',
]
med_config = {
'architectures': ['BertModel'],
'attention_probs_dropout_prob': 0.1,
'hidden_act': 'gelu',
'hidden_dropout_prob': 0.1,
'hidden_size': 768,
'initializer_range': 0.02,
'intermediate_size': 3072,
'layer_norm_eps': 1e-12,
'max_position_embeddings': 512,
'model_type': 'bert',
'num_attention_heads': 12,
'num_hidden_layers': 12,
'pad_token_id': 0,
'add_type_embeddings': False,
'vocab_size': 30524,
'encoder_width': 768,
'add_cross_attention': True
}
model = dict(
type='BlipGrounding',
visual_encoder=dict(
type='VisionTransformer',
arch='b',
img_size=384,
patch_size=16,
out_type='raw',
),
text_encoder=dict(
type='XBertEncoder',
med_config=med_config,
),
multimodal_encoder=dict(
type='XBertEncoder',
med_config=med_config,
),
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
head=dict(
type='GroundingHead',
decoder=dict(
type='XBertLMHeadDecoder',
med_config=med_config,
),
box_l1_loss_coeff=4.0,
box_giou_loss_coeff=2.0,
),
)
# schedule settings
optimizer = dict(type='AdamW', lr=1.5e-5, weight_decay=0.02)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
train_cfg = dict(by_epoch=True, max_epochs=120)
val_cfg = dict()
test_cfg = dict()