forked from kentonl/e2e-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiments.conf
111 lines (103 loc) · 2.36 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Word embeddings.
glove_300d {
path = glove.840B.300d.txt
size = 300
format = txt
lowercase = false
}
glove_300d_filtered {
path = glove.840B.300d.txt.filtered
size = 300
format = txt
lowercase = false
}
turian_50d {
path = turian.50d.txt
size = 50
format = txt
lowercase = false
}
# Compute clusters.
nlp {
addresses {
ps = [nlp2:2222]
worker = [n01:2222, n02:2222, n03:2222, n04:2222, n05:2222, n07:2222, n08:2222, n09:2222, n10:2222, n11:2222, n12:2222, n13:2222, n14:2222, n15:2222, n16:2222]
}
gpus = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
}
appositive {
addresses {
ps = [localhost:2222]
worker = [localhost:2223, localhost:2224]
}
gpus = [0, 1]
}
# Main configuration.
best {
# Computation limits.
max_antecedents = 250
max_training_sentences = 50
mention_ratio = 0.4
# Model hyperparameters.
filter_widths = [3, 4, 5]
filter_size = 50
char_embedding_size = 8
char_vocab_path = "char_vocab.english.txt"
embeddings = [${glove_300d_filtered}, ${turian_50d}]
lstm_size = 200
ffnn_size = 150
ffnn_depth = 2
feature_size = 20
max_mention_width = 10
use_metadata = true
use_features = true
model_heads = true
# Learning hyperparameters.
max_gradient_norm = 5.0
lexical_dropout_rate = 0.5
dropout_rate = 0.2
optimizer = adam
learning_rate = 0.001
decay_rate = 0.999
decay_frequency = 100
# Other.
train_path = train.english.jsonlines
eval_path = dev.english.jsonlines
conll_eval_path = dev.english.v4_auto_conll
genres = [bc, bn, mz, nw, pt, tc, wb]
eval_frequency = 1000
report_frequency = 100
log_root = logs
cluster = ${appositive}
}
# Multiple full models for ensembling.
best0 = ${best}
best1 = ${best}
best2 = ${best}
best3 = ${best}
best4 = ${best}
# Ablations.
glove = ${best} {
embeddings = [${glove_300d_filtered}]
}
turian = ${best} {
embeddings = [${turian_50d}]
}
nochar = ${best} {
char_embedding_size = -1
}
nometa = ${best} {
use_metadata = false
}
noheads = ${best} {
model_heads = false
}
nofeatures = ${best} {
use_features = false
}
# For evaluation. Do not use for training (i.e. only for decoder.py, ensembler.py, visualize.py and demo.py). Rename `best0` directory to `final`.
final = ${best} {
embeddings = [${glove_300d}, ${turian_50d}]
eval_path = test.english.jsonlines
conll_eval_path = test.english.v4_gold_conll
}