-
Notifications
You must be signed in to change notification settings - Fork 42
/
eval_poses.py
executable file
·191 lines (140 loc) · 6.75 KB
/
eval_poses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2024.
import argparse
import logging
import math
from distutils.util import strtobool
from pathlib import Path
import cv2
import numpy as np
from scipy.spatial.transform import Rotation
import eval_poses_util as tutil
import dataset_io
_logger = logging.getLogger(__name__)
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Compute pose error metrics for an ACE pose file using (pseudo) ground truth pose files.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('ace_pose_file', type=Path, help='Path to an ACE pose file with one line per image.')
parser.add_argument('gt_pose_files', type=str,
help="Glob pattern for pose files, e.g. 'datasets/scene/*.txt', each file is assumed to "
"contain a 4x4 pose matrix, cam2world, correspondence with rgb files in the ACE pose "
"file is assumed by alphabetical order")
parser.add_argument('--estimate_alignment', type=_strtobool, default=True,
help='Estimate rigid body transformation between estimates and ground truth.')
parser.add_argument('--estimate_alignment_scale', type=_strtobool, default=True,
help='Estimate similarity transformation when estimating alignment')
parser.add_argument('--estimate_alignment_conf_threshold', type=float, default=500,
help='Only consider pose estimates with higher confidence when estimates the alignment.')
parser.add_argument('--pose_error_thresh_t', type=float, default=0.05,
help='Pose threshold (translation) for evaluation and alignment')
parser.add_argument('--pose_error_thresh_r', type=float, default=5,
help='Pose threshold (rotation) for evaluation and alignment')
opt = parser.parse_args()
_logger.info("Reading ACE pose file.")
with open(opt.ace_pose_file, 'r') as f:
ace_pose_data = f.readlines()
# Dict mapping file name to ACE estimate
ace_estimates = {}
# parse pose file data
for pose_line in ace_pose_data:
# image info as: file_name, q_w, q_x, q_y, q_z, t_x, t_y, t_z, focal_length, confidence
pose_tokens = pose_line.split()
# read file name and confidence
file_name = pose_tokens[0]
confidence = float(pose_tokens[-1])
# read pose
q_wxyz = [float(t) for t in pose_tokens[1:5]]
t_xyz = [float(t) for t in pose_tokens[5:8]]
# quaternion to rotation matrix
R = Rotation.from_quat(q_wxyz[1:] + [q_wxyz[0]]).as_matrix()
# construct full pose matrix
T_world2cam = np.eye(4)
T_world2cam[:3, :3] = R
T_world2cam[:3, 3] = t_xyz
# pose files contain world-to-cam but we need cam-to-world
T_cam2world = np.linalg.inv(T_world2cam)
# store ACE estimate
ace_estimates[file_name] = (T_cam2world, confidence)
_logger.info(f"Read {len(ace_estimates)} poses from: {opt.ace_pose_file}")
# sort ACE estimates by file names
sorted_ace_poses = [ace_estimates[key] for key in sorted(ace_estimates.keys())]
# load ground truth poses, sorted by file name
sorted_gt_poses = dataset_io.load_pose_files(opt.gt_pose_files)
# convert torch to numpy
sorted_gt_poses = [pose.numpy() for pose in sorted_gt_poses]
_logger.info(f"Loaded {len(sorted_gt_poses)} ground truth poses.")
# Keep track of rotation and translation errors for calculation of the median error.
rErrs = []
tErrs = []
# Percentage of frames predicted within certain threshold from their GT pose.
accuracy = 0
if opt.estimate_alignment:
# alignment needs a list of pose correspondences with confidences
pose_correspondences = []
# walk through ACE estimates and GT poses in parallel
for (ace_pose, ace_confidence), gt_pose in zip(sorted_ace_poses, sorted_gt_poses):
pose_correspondences.append((tutil.TestEstimate(
pose_est=ace_pose,
pose_gt=gt_pose,
confidence=ace_confidence,
image_file=None,
focal_length=None
)))
alignment_transformation, alignment_scale = tutil.estimate_alignment(
estimates=pose_correspondences,
confidence_threshold=opt.estimate_alignment_conf_threshold,
estimate_scale=opt.estimate_alignment_scale,
inlier_threshold_r=opt.pose_error_thresh_r,
inlier_threshold_t=opt.pose_error_thresh_t,
)
if alignment_transformation is None:
_logger.info(f"Alignment requested but failed. Setting all pose errors to {math.inf}.")
else:
alignment_transformation = np.eye(4)
alignment_scale = 1.
# Evaluation Loop
for (ace_pose, ace_confidence), gt_pose in zip(sorted_ace_poses, sorted_gt_poses):
if alignment_transformation is not None:
# Apply alignment transformation to GT pose
gt_pose = alignment_transformation @ gt_pose
# Calculate translation error.
t_err = float(np.linalg.norm(gt_pose[0:3, 3] - ace_pose[0:3, 3]))
# Correct translation scale with the inverse alignment scale (since we align GT with estimates)
t_err = t_err / alignment_scale
# Rotation error.
gt_R = gt_pose[0:3, 0:3]
out_R = ace_pose[0:3, 0:3]
r_err = np.matmul(out_R, np.transpose(gt_R))
# Compute angle-axis representation.
r_err = cv2.Rodrigues(r_err)[0]
# Extract the angle.
r_err = np.linalg.norm(r_err) * 180 / math.pi
else:
pose_gt = None
t_err, r_err = math.inf, math.inf
_logger.info(f"Rotation Error: {r_err:.2f}deg, Translation Error: {t_err * 100:.1f}cm")
# Save the errors.
rErrs.append(r_err)
tErrs.append(t_err * 100) # in cm
# Check various thresholds.
if r_err < opt.pose_error_thresh_r and t_err < opt.pose_error_thresh_t:
accuracy += 1
total_frames = len(rErrs)
assert total_frames == len(ace_estimates)
# Compute median errors.
tErrs.sort()
rErrs.sort()
median_idx = total_frames // 2
median_rErr = rErrs[median_idx]
median_tErr = tErrs[median_idx]
# Compute final precision.
accuracy = accuracy / total_frames * 100
_logger.info("===================================================")
_logger.info("Test complete.")
_logger.info(f'Accuracy: {accuracy:.1f}%')
_logger.info(f"Median Error: {median_rErr:.1f}deg, {median_tErr:.1f}cm")