You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have a question. We used Deformable Conv in classification tasks. We set the training batchsize the same as im2col_step. During the test process, we put different numbers of test samples in test batch (e.g. test the testing dataset by input one sample per time, or test the testing dataset by inputing ten samples per time), and get different classification results. It seems that how many samples we input to the network each time impacts the final classification results. So why is this happening? Will you kindly give me some advice? What's the relationship between testing batchsize and im2col_step? What's the relationship between training batchsize and im2col_step?
The text was updated successfully, but these errors were encountered:
I have a question. We used Deformable Conv in classification tasks. We set the training batchsize the same as im2col_step. During the test process, we put different numbers of test samples in test batch (e.g. test the testing dataset by input one sample per time, or test the testing dataset by inputing ten samples per time), and get different classification results. It seems that how many samples we input to the network each time impacts the final classification results. So why is this happening? Will you kindly give me some advice? What's the relationship between testing batchsize and im2col_step? What's the relationship between training batchsize and im2col_step?
The text was updated successfully, but these errors were encountered: