-
Notifications
You must be signed in to change notification settings - Fork 0
/
pantcl-tutorial.html
859 lines (848 loc) · 210 KB
/
pantcl-tutorial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<meta content="Detlef Groth" name="author"/>
<meta content="2023-01-12" name="dcterms.date"/>
<title>Tutorial for the Pandoc Tcl filter</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
/* The extra [class] is a hack that increases specificity enough to
override a similar rule in reveal.js */
ul.task-list[class]{list-style: none;}
ul.task-list li input[type="checkbox"] {
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
</style>
<link href="data:text/css,%20%20%20%20html%20%7B%0A%20%20%20%20%20%20%20%20overflow-y%3A%20scroll%3B%0A%20%20%20%20%7D%0A%20%20%20%20body%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%23444%3B%0A%20%20%20%20%20%20%20%20font-family%3A%20Georgia%2C%20Palatino%2C%20%27Palatino%20Linotype%27%2C%20Times%2C%20%27Times%20New%20Roman%27%2C%20serif%3B%0A%20%20%20%20%20%20%20%20line-height%3A%201.2%3B%0A%20%20%20%20%20%20%20%20padding%3A%201em%3B%0A%20%20%20%20%20%20%20%20margin%3A%20auto%3B%0A%20%20%20%20%20%20%20%20max-width%3A%20%20900px%3B%0A%20%20%20%20%7D%0A%20%20%20%20a%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%230645ad%3B%0A%20%20%20%20%20%20%20%20text-decoration%3A%20none%3B%0A%20%20%20%20%7D%0A%20%20%20%20a%3Avisited%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%230b0080%3B%0A%20%20%20%20%7D%0A%20%20%20%20a%3Ahover%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%2306e%3B%0A%20%20%20%20%7D%0A%20%20%20%20a%3Aactive%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%23faa700%3B%0A%20%20%20%20%7D%0A%20%20%20%20a%3Afocus%20%7B%0A%20%20%20%20%20%20%20%20outline%3A%20thin%20dotted%3B%0A%20%20%20%20%7D%0A%20%20%20%20p%20%7B%0A%20%20%20%20%20%20%20%20margin%3A%200.5em%200%3B%0A%20%20%20%20%7D%0A%20%20%20%20p.date%20%7B%0A%20%20%20%20%20%20%20%20text-align%3A%20center%3B%0A%20%20%20%20%7D%0A%20%20%20%20img%20%7B%0A%20%20%20%20%20%20%20%20max-width%3A%20100%25%3B%0A%20%20%20%20%7D%0A%20%20%20%20%0A%20%20%20%20h1%2C%20h2%2C%20h3%2C%20h4%2C%20h5%2C%20h6%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%23111%3B%0A%20%20%20%20%20%20%20%20line-height%3A%20115%25%3B%0A%20%20%20%20%20%20%20%20margin-top%3A%201em%3B%0A%20%20%20%20%20%20%20%20font-weight%3A%20normal%3B%0A%20%20%20%20%7D%0A%20%20%20%20h1%20%7B%0A%20%20%20%20%20%20%20%20text-align%3A%20center%3B%0A%20%20%20%20%20%20%20%20font-size%3A%20120%25%3B%0A%20%20%20%20%7D%0A%20%20%20%20h2.author%2C%20h2.date%20%7B%0A%20%20%20%20%20%20%20%20text-align%3Acenter%3B%0A%20%20%20%20%20%20%20%20font-size%3A%20100%25%0A%20%20%20%20%7D%0A%20%20%20%20p.author%2C%20p.date%20%7B%0A%20%20%20%20%20%20%20%20font-size%3A%20110%25%3B%0A%20%20%20%20%7D%0A%20%20%20%20%0A/%2A%20%20%20%20h2%20%7B%0A%20%20%20%20%20%20%20%20text-transform%3A%20uppercase%3B%0A%20%20%20%20%7D%0A%20%20%20%20%2A/%0A%20%20%20%20pre%2C%20blockquote%20pre%20%7B%0A%20%20%20%20%20%20%20%20border-top%3A%200.1em%20%239ac%20solid%3B%0A%20%20%20%20%20%20%20%20background%3A%20%23e9f6ff%3B%0A%20%20%20%20%20%20%20%20padding%3A%2010px%3B%0A%20%20%20%20%20%20%20%20border-bottom%3A%200.1em%20%239ac%20solid%3B%0A%20%20%20%20%7D%0A%20%20%20%20%0A%20%20%20%20blockquote%20%7B%0A%20%20%20%20%20%20%20%20margin%3A%200%3B%0A%20%20%20%20%20%20%20%20padding-left%3A%203em%3B%20%0A%20%20%20%20%7D%0A%20%20%20%20%0A%20%20%20%20hr%20%7B%0A%20%20%20%20%20%20%20%20display%3A%20block%3B%0A%20%20%20%20%20%20%20%20height%3A%202px%3B%0A%20%20%20%20%20%20%20%20border%3A%200%3B%0A%20%20%20%20%20%20%20%20border-top%3A%201px%20solid%20%23aaa%3B%0A%20%20%20%20%20%20%20%20border-bottom%3A%201px%20solid%20%23eee%3B%0A%20%20%20%20%20%20%20%20margin%3A%201em%200%3B%0A%20%20%20%20%20%20%20%20padding%3A%200%3B%0A%20%20%20%20%7D%0A%20%20%20%20%0A%20%20%20%20pre%2C%20code%2C%20kbd%2C%20samp%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%23000%3B%0A%20%20%20%20%20%20%20%20font-family%3A%20Monaco%2C%20%27courier%20new%27%2C%20monospace%3B%0A%20%20%20%20%20%20%20%20font-size%3A%2090%25%3B%20%0A%20%20%20%20%7D%0A%20%20%20%20code.r%20%7B%0A%20%20%20%20%20%20%20%20color%3A%20%23770000%3B%0A%20%20%20%20%7D%0A%20%20%20%20pre%3Ahas%28code.tclout%29%20%7B%0A%20%20%20%20%20%20%20%20background%3A%20%23ffeeee%3B%0A%20%20%20%20%7D%0A%20%20%20%20pre%20%7B%0A%20%20%20%20%20%20%20%20white-space%3A%20pre%3B%0A%20%20%20%20%20%20%20%20white-space%3A%20pre-wrap%3B%0A%20%20%20%20%20%20%20%20word-wrap%3A%20break-word%3B%0A%20%20%20%20%7D%0A%20%20%20%20/%2A%20fix%2C%20do%20not%20like%20bold%20for%20every%20keyword%20%2A/%0A%20%20%20%20code%20span.kw%20%7B%20color%3A%20%23007020%3B%20font-weight%3A%20normal%3B%20%7D%20/%2A%20Keyword%20%2A/%0A%20%20%20%20%20pre.sourceCode%20%7B%0A%20%20%20%20%20%20%20%20background%3A%20%23fff6f6%3B%0A%20%20%20%20%7D%20%0A%20%20%20%20figure%2C%20p.author%20%7B%0A%20%20%20%20%20%20%20%20text-align%3A%20center%3B%0A%20%20%20%20%7D%0A%20%20%20%20table%20%7B%20%20%20%20%0A%20%20%20%20%20%20%20%20border-collapse%3A%20collapse%3B%0A%20%20%20%20%20%20%20%20border-bottom%3A%202px%20solid%3B%0A%20%20%20%20%20%20%20%20border-spacing%3A%205px%3B%0A%20%20%20%20%20%20%20%20min-width%3A%20400px%3B%0A%20%20%20%20%7D%0A%20%20%20%20table%20thead%20tr%20th%20%7B%20%0A%20%20%20%20%20%20%20%20background-color%3A%20%23fde9d9%3B%0A%20%20%20%20%20%20%20%20text-align%3A%20left%3B%20%0A%20%20%20%20%20%20%20%20padding%3A%2010px%3B%0A%20%20%20%20%20%20%20%20border-top%3A%202px%20solid%3B%0A%20%20%20%20%20%20%20%20border-bottom%3A%202px%20solid%3B%0A%20%20%20%20%7D%0A%20%20%20%20table%20td%20%7B%20%0A%20%20%20%20%20%20%20%20background-color%3A%20%23fff9e9%3B%0A%0A%20%20%20%20%20%20%20%20text-align%3A%20left%3B%20%0A%20%20%20%20%20%20%20%20padding%3A%2010px%3B%0A%20%20%20%20%7D%0A" rel="stylesheet"/><!--URL:mini.css-->
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<header id="title-block-header">
<h1 class="title">Tutorial for the Pandoc Tcl filter</h1>
<p class="author">Detlef Groth</p>
<p class="date">2023-01-12</p>
<div class="abstract">
<div class="abstract-title">Abstract</div>
<p>The Pantcl Pandoc Tcl filter allows you the embed Tcl code in code
blocks and short Tcl statements as well in the normal text of a Markdown
document. The code fragments will be executed dynamically and the output
of the Tcl commands can be shown in an extra code block or can replace
the code block as well. The pantcl application as well embeds other
filters written in Tcl for other tools like GraphViz dot, LateX etc.</p>
</div>
</header>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#name" id="toc-name">Name</a></li>
<li><a href="#usage" id="toc-usage">Usage</a></li>
<li><a href="#installation" id="toc-installation">Installation</a></li>
<li><a href="#tcl-filter" id="toc-tcl-filter">Tcl filter</a>
<ul>
<li><a href="#code-chunk-attributes" id="toc-code-chunk-attributes">Code
chunk attributes</a></li>
<li><a href="#images" id="toc-images">Images</a></li>
</ul></li>
<li><a href="#other-filters" id="toc-other-filters">Other
filters</a></li>
<li><a href="#dot-file-filter" id="toc-dot-file-filter">Dot file
filter</a></li>
<li><a href="#tsvg-plugin" id="toc-tsvg-plugin">tsvg plugin</a></li>
<li><a href="#filter-for-math-tex" id="toc-filter-for-math-tex">Filter
for Math-Tex</a></li>
<li><a href="#pic-and-eqn-filters" id="toc-pic-and-eqn-filters">PIC and
EQN filters</a></li>
<li><a href="#pikchr-filter" id="toc-pikchr-filter">Pikchr
filter</a></li>
<li><a href="#rplot-filter" id="toc-rplot-filter">Rplot filter</a></li>
<li><a href="#lua-filters" id="toc-lua-filters">Lua filters</a></li>
<li><a href="#summary" id="toc-summary">Summary</a></li>
<li><a href="#documentation" id="toc-documentation">Documentation</a></li>
<li><a href="#links" id="toc-links">Links</a></li>
<li><a href="#todo" id="toc-todo">Todo</a></li>
<li><a href="#author" id="toc-author">Author</a></li>
<li><a href="#license" id="toc-license">License</a></li>
</ul>
</nav>
<hr/>
<center>
<p>Filters: <a href="lib/tclfilters/filter-abc.html">filter-abc</a> - <a href="lib/tclfilters/filter-cmd.html">filter-cmd</a> - <a href="lib/tclfilters/filter-dot.html">filter-dot</a> - <a href="lib/tclfilters/filter-eqn.html">filter-eqn</a> - <a href="lib/tclfilters/filter-mmd.html">filter-mmd</a> - <a href="lib/tclfilters/filter-mtex.html">filter-mtex</a> - <a href="lib/tclfilters/filter-pic.html">filter-pic</a> - <a href="lib/tclfilters/filter-pik.html">filter-pik</a> - <a href="lib/tclfilters/filter-pipe.html">filter-pipe</a> - <a href="lib/tclfilters/filter-puml.html">filter-puml</a> - <a href="lib/tclfilters/filter-rplot.html">filter-rplot</a> - <a href="lib/tclfilters/filter-sqlite.html">filter-sqlite</a> - <a href="lib/tclfilters/filter-tcrd.html">filter-tcrd</a> - <a href="lib/tclfilters/filter-tcl.html">filter-tcl</a> - <a href="lib/tclfilters/filter-tdot.html">filter-tdot</a> - <a href="lib/tclfilters/filter-tsvg.html">filter-tsvg</a> <br/></p>
Documentation: <a href="pantcl.html">Pantcl documentation</a> - <a href="pantcl-tutorial.html">Pantcl Tutorial</a> - <a href="README.html">Pantcl Readme</a> - <a href="lib/fview/filter-view.html">Pantcl GUI filter viewer</a>
</center>
<hr/>
<h2 id="name">Name</h2>
<p><em>Tutorial Pantcl Tcl filter for Pandoc</em> - Tcl based pandoc
filter to execute programming and other Markup code within Markdown
documents and use code results for documentation.</p>
<h2 id="usage">Usage</h2>
<ul>
<li>works as filter for pandoc or just standalone (then only conversion
to HTML or Markdown is possible)</li>
<li>embedded graphical user interface, see <a href="filter-view.html">filter-view.html</a></li>
<li>evaluation of Tcl and other programming language code with textual
Markup files like Markdown or Asciidoc and adding the results, figures,
tables etc from the code evaluation to a resulting document like HTML,
PDF, DOCX, Markdown etc</li>
<li>easy to extend, many filters for other programming languages like
(Python, Octave, R) are already embedded</li>
<li>filters for many graphical tools such as GraphViz, Pikchr, PlantUML,
mermaid, LaTeX like</li>
<li>generic filter for all type of terminal applications such as
LilyPond, C/C++ compilers etc. where examples are given</li>
<li>all tools and filters can be applied within a single document</li>
<li>can be used to extract and process embedded Markdown documentation
in source code of different programming languages, such as C/C++, Tcl,
Python, etc.</li>
<li>the packed Tcl script with these features has a size of just around
1Mb</li>
</ul>
<p>Here some call syntax examples:</p>
<pre><code> pandoc input.md -s --filter pantcl.bin -o output.html
# or using the Tcl script from the unpacked application (not recommended)
pandoc input.md -s --filter pantcl.tcl -o output.html
# code documentation tool for extracting Markdown based documentation
# and evaluating code within code chunks as in standard Markdown documents
pantcl.bin sourcefile.tcl sourcfile.html --css file.css -s
# the same but not using pandoc but the internal Markdown library
# only conversion to HTML is possible
pantcl.bin sourcefile.tcl sourcfile.html --css file.css --no-pandoc
# graphical user interface
# files must have filter name extensions like
# .abc, .dot, .eqn, .mmd, .pic, .pik etc
pantcl.bin --gui somefile </code></pre>
<h2 id="installation">Installation</h2>
<p>The easiest way to install the pantcl Tcl filter application is by
using the standalone executable from the Github repository <a href="https://github.com/mittelmark/pantcl/">https://github.com/mittelmark/pantcl</a>
Download this file, rename the binary to <code>pantcl.bin</code> or just
<code>pantcl</code> and make it executable and place it a directory
belonging to your PATH variable. Windows user should use a Bash like
environment like the Git-Bash to make files executable. The only
prerequisite the application has is a working Tcl installation. The
required Tcl libraries are all wrapped into the standalone
exectuable.</p>
<p>Alternatively the application can be installed by specifying the
correct path to the Tcl script in your pandoc command line call.
Programmers which like to add their own filters can as well download and
modify the filters or add new filters in the filter directory. The
direct link to the github repository folder is: <a href="https://downgit.github.io/#/home?url=https://github.com/mittelmark/pantcl/tree/master/">https://downgit.github.io/#/home?url=https://github.com/mittelmark/pantcl/tree/master/</a>
Just unpack the folder and make the Tcl script <code>pantcl.tcl</code>
executable. Your pandoc call should then point to this directory.</p>
<p>The filter requires the Tcl package <em>rl_json</em> which is
available from Github: <a href="https://github.com/RubyLane/rl_json">https://github.com/RubyLane/rl_json</a>.
The standalone application already contains precompiled binaries for
64bit Linu, Windows and Mac-OSX. Unix users should be able to install
the <em>rl_json</em> package via the standard configure/make pipeline. A
Linux binary, complied on a recent Fedora system is included in the
download link at the GitHub page as well to simplify the use of the
Pandoc filter. Windows users should install the <em>rl_json</em> package
via the Magicplats Tcl-Installer: <a href="https://www.magicsplat.com/tcl-installer/index.html">https://www.magicsplat.com/tcl-installer</a></p>
<h2 id="tcl-filter">Tcl filter</h2>
<p>Below some basic information about the Tcl filter, more examples are
given in the Pantcl filter documentation file here: <a href="pantcl.html">pantcl.html</a>.</p>
<p>Tcl code can be embedded either within single backtick marks where
the first backtick is immediately followed by the string
<code>tcl</code> and the Tcl code such as in the following example:</p>
<pre><code>The variable is now `tcl set x 5` or five times three is `tcl expr {3*5}`.
This document was processed using Tcl `tcl package provide Tcl`.</code></pre>
<p>Here the output:</p>
<p>The variable is now 5 or five times three is 15.</p>
<p>This document was processed using Tcl 8.6.13.</p>
<p>The results from the code execution will be directly embedded in the
text and will replace the Tcl code. Such inline statements should be
short and concise and should not break over several lines. Currently
single backtick statements must be within non-list environments
only.</p>
<p>Larger chunks of code can be placed within triple backticks such as
in the example below.</p>
<pre><code> ```{.tcl eval=true}
# please remove the spaces before these lines
# they are used to guard against code evaluation
set x 3
proc add {x y} {
return [expr {$x+$y}]
}
add $x 7
```</code></pre>
<p>In the code above a space was added to avoid confusing the pandoc
interpreter by nested triple tickmarks, remove those spaces in your
code.</p>
<p>And here the output:</p>
<pre class="tclinn"><code>set x 3
proc add {x y} {
return [expr {$x+$y}]
}
add $x 7</code></pre>
<pre class="tclout"><code>10</code></pre>
<p>Please note, that only the last statement is shown in code block
after the Tcl code. To show more output you can use the
<code>puts</code> command.</p>
<h3 id="code-chunk-attributes">Code chunk attributes</h3>
<p>Within the curly braces the following attributes are currently
supported:</p>
<ul>
<li><em>eval=false|true</em> - evaluate the Tcl code</li>
<li><em>results=show|hide</em> - show the output of the Tcl code
execution</li>
<li><em>echo=true|false</em> - show the Tcl code</li>
</ul>
<p>Please note, that since version 0.9.9 the default for the
<code>eval</code> option is <code>false</code> (0), so you should enable
this code evaluation manually for each code chunk by writing in the code
chunk options something like <code>eval=true</code> or in the YAML
header using <code>eval: 1</code> - here you can’t use true or
false.</p>
<p>Here an example for a YAML header:</p>
<pre><code>---
tcl:
eval: 1
--- </code></pre>
<p>Errors in the Tcl code will be usually trapped and the error info is
shown instead of the regular output.</p>
<h3 id="images">Images</h3>
<p>As Tcl has no standard library in the core to create graphics without
the Tk toolkit we will create a small object using a minimal object
oriented system which can be used to create svg files easily.</p>
<h4 id="thingy-svg-example">Thingy svg example</h4>
<pre class="tclinn"><code>;# the onliner OO system thingy see here
;# https://wiki.tcl-lang.org/page/Thingy%3A+a+one%2Dliner+OO+system
proc thingy name {
proc $name args "namespace eval $name \$args"
}
;# our object
thingy svg
;# some variables
svg set code "" ;# the svg code
svg set header {<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" height="__HEIGHT__" width="__WIDTH__">}
svg set footer {</svg>}
svg set width 100
svg set height 100
;# lets look what variables are there
info vars svg::* </code></pre>
<pre class="tclout"><code>::svg::width ::svg::height ::svg::header ::svg::footer ::svg::code</code></pre>
<p>We now need a method <em>unknown</em> which catches all command on
the object and forward this to the tag creation method.</p>
<pre class="tclinn"><code>;# the actual tag svg creation method
svg proc tag {args} {
variable code
set tag [lindex $args 0]
set args [lrange $args 1 end]
set ret "\n<$tag"
foreach {key val} $args {
if {$val eq ""} {
append ret ">\n$key\n</$tag>\n"
break
} else {
append ret " $key=\"$val\""
}
}
if {$val ne ""} {
append ret " />\n"
}
append code $ret
}
;# any unknown should forward to the tag method
namespace eval svg {
namespace unknown svg::tag
}
; # write out the current svg code
svg proc write {filename} {
variable width
variable height
variable header
variable footer
variable code
set out [open $filename w 0600]
set head [regsub {__HEIGHT__} $header $height]
set head [regsub {__WIDTH__} $head $width]
puts $out $head
puts $out $code
puts $out $footer
close $out
}
;# what methods we have
info commands svg::*</code></pre>
<pre class="tclout"><code>::svg::tag ::svg::write</code></pre>
<p>Ok we are now ready to go: Let’s create the typical “Hello World!”
example, the first argument will be the tag every remaining pairs will
be the attribute and the value, remaining single arguments will be
placed within the tag as content:</p>
<pre class="tclinn"><code>svg circle cx 50 cy 50 r 45 stroke black stroke-width 2 fill salmon
svg text x 29 y 45 Hello
svg text x 27 y 65 World!
svg write images/hello-world.svg</code></pre>
<p>Let’s now display the image:</p>
<pre><code> ![](images/hello-world.svg)</code></pre>
<p>Here the image displayed:</p>
<p><img src=""/><!--URL:images/hello-world.svg--></p>
<p>Let’s now clean up the svg code:</p>
<pre class="tclinn"><code>svg set code ""</code></pre>
<p>We can now create an other image, let’s create a chessboard:</p>
<pre class="tclinn"><code>svg set width 420
svg set height 420
for {set i 0} {$i < 8} {incr i} {
if {[expr {$i % 2}] == 0} {
set cols [join [lrepeat 4 [list cornsilk burlywood]]]
} else {
set cols [join [lrepeat 4 [list burlywood cornsilk ]]]
}
for {set j 0} {$j < 8} {incr j} {
set x [expr {10+$i*50}]
set y [expr {10+$j*50}]
svg rect x $x y $y width 50 height 50 fill [lindex $cols $j] stroke-width 3
}
svg rect x 6 y 6 width 408 height 408 stroke sienna stroke-width 7 fill transparent
}
svg write images/chessboard.svg</code></pre>
<p><img src=""/><!--URL:images/chessboard.svg--></p>
<p>Great! Let’s now illustrate a few more basic shapes. We will follow
the examples at <a href="https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Basic_Shapes">https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Basic_Shapes</a></p>
<p>But first let’s rewrite the <code>svg tag</code> function so that we
can as well take a list of attributes.</p>
<pre class="tclinn"><code>svg proc tag {args} {
variable code
set tag [lindex $args 0]
set args [lrange $args 1 end]
set ret "\n<$tag"
# new check if attr="val" syntax
if {[regexp {=} [lindex $args 0]]} {
set nargs [list]
foreach kval $args {
set idx [string first = $kval]
set key [string range $kval 0 $idx-1]
set val [string range $kval $idx+2 end-1]
lappend nargs $key
lappend nargs $val
}
set args $nargs
}
# end of new check
foreach {key val} $args {
if {$val eq ""} {
append ret ">\n$key\n</$tag>\n"
break
} else {
append ret " $key=\"$val\""
}
}
if {$val ne ""} {
append ret " />\n"
}
append code $ret
}</code></pre>
<p>With this redefinition of the tag method we can now very easily copy
the svg code from the website. We just have to remove the greater,
smaller and slash tag signs from the svg code. As arguments to functions
in Tcl are separated by spaces we have to protect attributes containing
spaces with curly braces for the last three shapes, the polyline, the
polygon and the path.</p>
<pre class="tclinn"><code>svg set code "" ;# cleanup chessboard
svg set width 200 ;# new size as on the webpage
svg set height 250
svg rect x="10" y="10" width="30" height="30" stroke="black" fill="transparent" stroke-width="5"
svg rect x="60" y="10" rx="10" ry="10" width="30" height="30" \
stroke="black" fill="transparent" stroke-width="5"
svg circle cx="25" cy="75" r="20" stroke="red" fill="transparent" stroke-width="5"
svg ellipse cx="75" cy="75" rx="20" ry="5" stroke="red" fill="transparent" stroke-width="5"
svg line x1="10" x2="50" y1="110" y2="150" stroke="orange" stroke-width="5"
svg polyline {points="60 110 65 120 70 115 75 130 80 125 85 140 90 135 95 150 100 145"} \
stroke="orange" fill="transparent" stroke-width="5"
svg polygon {points="50 160 55 180 70 180 60 190 65 205 50 195 35 205 40 190 30 180 45 180"} \
stroke="green" fill="transparent" stroke-width="5"
svg path {d="M20,230 Q40,205 50,230 T90,230"} fill="none" stroke="blue" stroke-width="5"
svg write images/basic-shapes.svg</code></pre>
<p><img src=""/><!--URL:images/basic-shapes.svg--></p>
<p>Ok, great basic shapes can be directly copied from svg code and with
a few modifications we can create valid Tcl code out of the svg code.
Please note, that from the code shown in this Readme the package
<em>tsvg</em> was derived which does not need this protecting of the
spaces within the attributes. See below the section about the
<em>tsvg</em> plugin for more details.</p>
<h4 id="code-chunk-attributes-for-svg-figures">Code chunk attributes for
svg figures</h4>
<p>Let’s introduce now a few code chunk attributes for figures as they
are known for instance in R.</p>
<p>Below an example:</p>
<pre><code> ```{.tcl fig=true fig.width=400 fig.height=400}
# some figure code
```</code></pre>
<p>This code should call some procedure figure with the arguments of a
basic filename, <em>fig.width</em>, <em>fig.height</em> and it should
return a filename with an extension like <code>.svg</code></p>
<p>Here an outline of such a function:</p>
<pre><code>proc figure {filename width height args} {
# parse args, get width, get height
# write file
# return filename with extension
}</code></pre>
<p>Ok, lets now implement our figure procedure for our svg:</p>
<pre class="tclinn"><code>proc figure {filename width height args} {
svg set width $width
svg set height $height
svg write images/$filename.svg
return $filename.svg
}</code></pre>
<p>Now in the next code chunk we create a new figure:</p>
<pre><code> ` ``{.tcl label=figsample fig=true width=80 height=80}
svg set code ""
svg rect x 0 y 0 width 80 height 80 fill cornsilk
svg rect x 10 y 10 width 60 height 60 fill salmon
` ``
![](images/figsample.svg)</code></pre>
<p>Here the actual code (the space between the backticks was added to
avoid interpretation problems by pandoc):</p>
<pre class="tclinn"><code>svg set code ""
svg rect x 0 y 0 width 80 height 80 fill cornsilk
svg rect x 10 y 10 width 60 height 60 fill salmon</code></pre>
<p><img src=""/><!--URL:images/figsample.svg--></p>
<ul>
<li>TODO: autoembedding of figures by chunk number</li>
</ul>
<h2 id="other-filters">Other filters</h2>
<p>The <em>pantcl filter</em> supports as well generation of filters for
other tools and programming languages using the Tcl programming
language. The standalone application <em>pantcl.bin</em> comes with the
following filters:</p>
<table>
<colgroup>
<col style="width: 33%"/>
<col style="width: 33%"/>
<col style="width: 33%"/>
</colgroup>
<thead>
<tr class="header">
<th>filter</th>
<th>Tool</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>.abc</td>
<td>ABC music</td>
<td><a href="http://moinejf.free.fr/">http://moinejf.free.fr/</a></td>
</tr>
<tr class="even">
<td>.cmd</td>
<td>Bash scripts</td>
<td></td>
</tr>
<tr class="odd">
<td>.dot</td>
<td>dot/neato (GraphViz)</td>
<td><a href="https://graphviz.org/">https://graphviz.org/</a></td>
</tr>
<tr class="even">
<td>.emf</td>
<td>Jasspa MicroEmacs (me)</td>
<td><a href="http://www.jasspa.com/">http://www.jasspa.com</a></td>
</tr>
<tr class="odd">
<td>.eqn</td>
<td>eqn2graph (groff)</td>
<td><a href="https://www.gnu.org/software/groff/">https://www.gnu.org/software/groff/</a></td>
</tr>
<tr class="even">
<td>.mmd</td>
<td>mmdc (Mermaid-cli)</td>
<td><a href="https://www.npmjs.com/package/mermaid.cli">https://www.npmjs.com/package/mermaid.cli</a></td>
</tr>
<tr class="odd">
<td>.mtex</td>
<td>LaTex</td>
<td><a href="https://www.latex-project.org/">https://www.latex-project.org/</a></td>
</tr>
<tr class="even">
<td>.pic</td>
<td>pic2graph (groff)</td>
<td><a href="https://www.gnu.org/software/groff/">https://www.gnu.org/software/groff/</a></td>
</tr>
<tr class="odd">
<td>.pik</td>
<td>pikchr/fossil pikchr</td>
<td><a href="https://www.fossil-scm.org/home/doc/trunk/www/pikchr.md">https://www.fossil-scm.org/home/doc/trunk/www/pikchr.md</a></td>
</tr>
<tr class="even">
<td>.pipe</td>
<td>R, python, octave</td>
<td></td>
</tr>
<tr class="odd">
<td>.puml</td>
<td>plantuml</td>
<td><a href="https://plantuml.com/">https://plantuml.com/</a></td>
</tr>
<tr class="even">
<td>.rplot</td>
<td>Rscript</td>
<td><a href="https://www.r-project.org">https://www.r-project.org</a></td>
</tr>
<tr class="odd">
<td>.sqlite</td>
<td>sqlite3</td>
<td><a href="https://www.sqlite.org/index.html">https://www.sqlite.org</a></td>
</tr>
<tr class="even">
<td>.tcl</td>
<td>tclsh</td>
<td><a href="https://www.tcl.tk">https://www.tcl.tk</a></td>
</tr>
<tr class="odd">
<td>.tcrd</td>
<td>Tcl (chords for songs)</td>
<td></td>
</tr>
<tr class="even">
<td>.tdot</td>
<td>Tcl tdot package</td>
<td><a href="https://github.com/mittelmark/DGTcl">https://github.com/mittelmark/DGTcl</a></td>
</tr>
<tr class="odd">
<td>.tsvg</td>
<td>Tcl tsvg package</td>
<td><a href="https://github.com/mittelmark/DGTcl">https://github.com/mittelmark/DGTcl</a></td>
</tr>
</tbody>
</table>
<h2 id="dot-file-filter">Dot file filter</h2>
<p>Let’s finish our small tutorial with the implementation of a filter
for a command line application. Below you see the code for the GraphViz
dot application.</p>
<p>Here the code example (remove the space after the first backtick,
space was added to avoid interpretation):</p>
<pre><code>` ``{.dot label=digraph echo=true eval=true}
digraph G {
main -> parse -> execute;
main -> init [dir=none];
main -> cleanup;
execute -> make_string;
execute -> printf
init -> make_string;
main -> printf;
execute -> compare;
}
` ``</code></pre>
<p>Which will produce the following output:</p>
<pre class="dotinn"><code>digraph G {
main -> parse -> execute;
main -> init [dir=none];
main -> cleanup;
execute -> make_string;
execute -> printf
init -> make_string;
main -> printf;
execute -> compare;
}</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/digraph.svg--></p>
<p>Using the chunk option <em>echo=false</em>, we can as well hide the
source code. If you would like to see the code you now have to consult
the Markdown file.</p>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/digraph2.svg--></p>
<p>To avoid automatic placement of figures you can as well set the
option include to false <em>include=false</em> and then create the usual
Markdown code for the figure where the basename is defined by a
<code>images</code> subfolder the chunk label.</p>
<pre><code>` ``{.dot label=digraph3 echo=false include=false eval=true}
digraph G {
main [shape=box,style=filled,fillcolor=".5 .8 1.0"] ;
main -> parse -> execute;
main -> init [style=dotted];
main -> cleanup;
execute -> make_string;
execute -> printf
edge [color="red"];
init -> make_string;
edge [dir="none"]; // no arrows
main -> printf;
execute -> compare;
}
` ``
![](images/digraph3.svg)</code></pre>
<p>This will produce the following:</p>
<p><img src=""/><!--URL:images/digraph3.svg--></p>
<p>OK, now you know what was the code to create the graphic above.</p>
<p>The dot filter supports as well the other command line applications
from the GraphViz toolbox. To switch for instance from the
<code>dot</code> command line application to the <code>neato</code>
application give the chunk argument <code>app=neato</code> and you can
enter neato code in your code chunk here an example:</p>
<pre><code>` ``{.dot label=neato app=neato eval=true}
graph G {
node [shape=box,style=filled,fillcolor=skyblue,
color=black,width=0.4,height=0.4];
n0 -- n1 -- n2 -- n3 -- n0 ;
}
` ``</code></pre>
<p>Which will produce this:</p>
<pre class="dotinn"><code>graph G {
node [shape=box,style=filled,fillcolor=skyblue,
color=black,width=0.4,height=0.4];
n0 -- n1 -- n2 -- n3 -- n0 ;
}</code></pre>
<p>You can try out as well the GraphViz layout engines yourself. Please
have a look at the GraphViz homepage at <a href="https://www.graphviz.org/docs/layouts/">https://www.graphviz.org/docs/layouts/</a>.</p>
<h2 id="tsvg-plugin">tsvg plugin</h2>
<p>The code shown above creating svg files using the thingy object was
as well saved as a plugin with some modifications and extensions. That
way you can include code creating svg files using the described syntax
above. Please not that the plugin object is named <code>tsvg</code>.
Here an example.</p>
<pre><code>` ``{.tsvg label=tsvg-hello-world results=hide echo=false eval=true}
tsvg circle cx 50 cy 50 r 45 stroke black stroke-width 2 fill salmon
tsvg text x 29 y 45 Hello
tsvg text x 26 y 65 World!
` ```</code></pre>
<p>Which will produce this:</p>
<pre class="tsvginn"><code>tsvg circle cx 50 cy 50 r 45 stroke black stroke-width 2 fill salmon
tsvg text x 29 y 45 Hello
tsvg text x 26 y 65 World!</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/tsvg-hello-world.svg--></p>
<p>In contrast to the svg code developed above the <em>tsvg</em> plugin
allows you to send the attributes containing as well spaces as they are,
the <em>tag</em> method will clean up the lists arguments by using the
paired quotes. This greatly simplifies the copy and paste procedure for
existing svg examples, you in many cases just have to remove the leading
and trailing greater and lower signs. Here is an example using different
syntax types:</p>
<pre class="tsvginn"><code>tsvg set code ""
tsvg set width 180
tsvg set height 200
tsvg rect x 10 y 10 width 160 height 180 style "fill:#ddeeff;"
tsvg circle cx="130" cy="120" r="20" stroke="red" stroke-width="2" fill="salmon"
tsvg polyline points="0,40 40,40 40,80 80,80 80,120 120,120 120,160" \
style="fill:white;stroke:red;stroke-width:4"</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/tsvg-polyline.svg--></p>
<p>For more information about the <em>tsvg</em> package visit the <a href="lib/tsvg/tsvg.html">tsvg manual page</a>.</p>
<h2 id="filter-for-math-tex">Filter for Math-Tex</h2>
<p>This filter requires a <em>LaTeX</em> installation and the
texlive-standalone package. The plugin uses in the background conversion
of a <em>LaTeX</em> formula using the <em>latex</em> command line
application and thereafter a conversion to png using the <em>dvipgn</em>
application which is part of the LaTeX installation. Please note that
currently only single line equations are supported:</p>
<p>Here two examples:</p>
<pre class="mtexinn"><code>$ E = m \times c^2 $</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/mtex-7.png--></p>
<p>And here the second example:</p>
<pre class="mtexinn"><code>$ F(x) = \int^a_b \frac{1}{3}x^3 $</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/mtex-8.png--></p>
<p>May be later version will support aligned sets of equations or
matrices.</p>
<h2 id="pic-and-eqn-filters">PIC and EQN filters</h2>
<p>The <em>groff</em> typesetting systems comes with the tools
<em>eqn2graph</em> which converts EQN equations into PNG graphics and
and <em>pic2graph</em> which converts diagram code written in the PIC
programming language into PNG graphics. Below are two examples, one for
each tool:</p>
<p>Here an example for the PIC language:</p>
<pre><code> ```{.pic ext=png eval=true}
circle "circle" rad 0.5 fill 0.3; arrow ;
ellipse "ellipse" wid 1.4 ht 1 fill 0.1 ; line;
box wid 1 ht 1 fill 0.05 "A";
spline;
box wid 0.4 ht 0.4 fill 0.05 "B";
arc;
box wid 0.2 ht 0.2 fill 0.05 "C";
```</code></pre>
<p>And here the output:</p>
<pre class="picinn"><code>circle "circle" rad 0.5 fill 0.3; arrow ;
ellipse "ellipse" wid 1.4 ht 1 fill 0.1 ; line;
box wid 1 ht 1 fill 0.05 "A";
spline;
box wid 0.4 ht 0.4 fill 0.05 "B";
arc;
box wid 0.2 ht 0.2 fill 0.05 "C";</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/pic-9.png--></p>
<p>The complete code was:</p>
<pre><code> ```{.pic ext=png eval=true}
circle "circle" rad 0.5 fill 0.3; arrow ;
ellipse "ellipse" wid 1.4 ht 1 fill 0.1 ; line;
box wid 1 ht 1 fill 0.05 "A";
spline;
box wid 0.4 ht 0.4 fill 0.05 "B";
arc;
box wid 0.2 ht 0.2 fill 0.05 "C";
```</code></pre>
<p>And here an example for the EQN language:</p>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/eqn-10.png--></p>
<p>The code here was (the indentation of five spaces is just to avoid
interpretation), density 144 was used to make the equation smaller:</p>
<pre><code> ```{.eqn echo=false eval=true density=144}
x = {-b +- sqrt{b sup 2 - 4ac}} over 2a
```</code></pre>
<h2 id="pikchr-filter">Pikchr filter</h2>
<p>The PIC diagram language has a modern successor, the Pikchr diagram
language used on the Sqlite webpage to display syntax diagrams. The
homepage of the pikchr tool is at: <a href="https://pikchr.org">https://pikchr.org/</a>. The tool can be
compiled easily, but even easier you can as well download the
<em>fossil</em> application which has a subcommand <em>pikchr</em> which
allows you to create as well diagrams. The downloads of <em>fossil</em>
for various platforms can be found here <a href="https://www.fossil-scm.org/home/uv/download.html">https://www.fossil-scm.org/home/uv/download.html</a>.</p>
<p>If the <em>fossil</em> application is in your PATH ou can create
easily as well <em>pikchr</em> diagrams. Here an example:</p>
<pre class="pikchrinn"><code>box "box"
circle "circle" fill cornsilk at 1 right of previous
ellipse "ellipse" at 1 right of previous
oval "oval" at .8 below first box
cylinder "cylinder" at 1 right of previous
file "file" at 1 right of previous</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/pik-11.svg--></p>
<p>The code for this diagram follows below:</p>
<pre><code>` ``{.pikchr app=fossil ext=pdf eval=true}
box "box"
circle "circle" fill cornsilk at 1 right of previous
ellipse "ellipse" at 1 right of previous
oval "oval" at .8 below first box
cylinder "cylinder" at 1 right of previous
file "file" at 1 right of previous
` ``</code></pre>
<p>Please note, that at least <em>fossil</em> in version 2.13 or higher
is required.</p>
<p>We can as well resize the image. In this case we have to create a
<em>png</em> extension. As conversion from svg to png is then required
we need a tool called cairosvg which can be installed as a Python
packagte using pip:</p>
<pre><code>pip3 install cairosvg --user</code></pre>
<p>Should do this. The advantage if using this tool is, that we beside
resizing we can as well create PDF’s for inclusion into LaTeX documents.
Here an example for a PNG image.</p>
<pre class="pikchrinn"><code>box "box"
circle "circle" fill cornsilk at 1 right of previous
ellipse "ellipse" at 1 right of previous
oval "oval" at .8 below first box
cylinder "cylinder" at 1 right of previous
file "file" at 1 right of previous</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/fossil-sample.png--></p>
<p>Here is the code:</p>
<pre><code>` ``{.pikchr app=fossil ext=png width=500 height=300 eval=true}
` ``</code></pre>
<p>As you can see using the <code>ext=png</code> setting and the
<code>width</code> and <code>height</code> options, we can resize the
image.</p>
<h2 id="rplot-filter">Rplot filter</h2>
<p>The usual way to embed R code in Markdown is using the R-knitr
library and then use R to execute the code embedded within the
R-Markdown file. This type of execution is however not compatible with
pandoc as knitr modifies the code chunks without R-code as well. So it
is not easily possible to embed other filters in documents processed
with R/knitr first. Although the R-knitr command is useful if the main
focus is on R, it is however not favourable if you just would like to
add a few plots or execute a few statements. For a few simple plots you
can use the filter <code>.rplot</code> to embed them within your
document. Here an example.</p>
<pre class="rplotinn"><code>data(iris)
pairs(iris[,1:3],pch=19,col=as.numeric(iris$Species)+1)
x=1</code></pre>
<p><img src=""/><!--URL:/home/dgroth/workspace/pantcl/images/iris.png--></p>
<p>Here is the code:</p>
<pre><code>` ``{.rplot label=iris echo=true results="hide" width=800 height=600 eval=true}
data(iris)
pairs(iris[,1:3],pch=19,col=as.numeric(iris$Species)+1)
` ``</code></pre>
<p>And here just some code without a figure.</p>
<pre class="rplotinn"><code>print(head(iris))</code></pre>
<pre class="rplotout"><code> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa</code></pre>
<p>That is the code:</p>
<pre><code>` ``{.rplot fig=false eval=true}
print(head(iris))
` ``</code></pre>
<p>Session are as well retained, so you can use variables created in
code chunks before.</p>
<pre class="rplotinn"><code>print(x)</code></pre>
<pre class="rplotout"><code>[1] 1</code></pre>
<p>Here the code:</p>
<pre><code>` ``{.rplot fig=false eval=true}
print(x)
` ``</code></pre>
<p>In contrast to the R-knitr tool this filter will start for each chunk
a new process, so it is much slower then the R-knitr tool, so as I have
written above, it should be used mostly for Markdown documents with just
a few code chunks and with simple outputs. Thre is no support for
sophisticated features like nice tables etc..</p>
<h2 id="lua-filters">Lua filters</h2>
<p>Pandoc since version 2.0 has embedded support for Lua filters. To no
reinvent every filter again you should use Lua filters if they are
available. Below an example for a Lua filter:</p>
<pre><code> **strong** should be converted to smallcaps using the Lua filter _smallcaps.lua_!</code></pre>
<p><span class="smallcaps">strong</span> should be converted to
smallcaps using the Lua filter <em>smallcaps.lua</em>! To apply Lua
filters use the pandoc option
<code>--lua-filter=path/to/smallcaps.lua</code>.</p>
<p>For more details see the Pandoc documentation at <a href="https://pandoc.org/lua-filters.html">https://pandoc.org/lua-filters.html</a>
and for examples of Lua filter look at GitHub <a href="https://github.com/pandoc/lua-filters">https://github.com/pandoc/lua-filters</a>.</p>
<h2 id="summary">Summary</h2>
<p>In this Readme I explained on how to use the Tcl pandoc filter to
embed and process Tcl code during the creation of HTML or PDF documents.
The Tcl filter was generalized so that as well filters for other tools,
especially command line application can be easily programmed using the
Tcl programming language. Examples for a filter for the GraphViz tool
dot to create flowcharts and graphs, a package to create SVG images
using Tcl, the new <em>tsvg</em> package, a little renderer for single
TeX equations, filters for the PIC and EQN langauges and as well for the
Pikchr diagram tools are as well included in the pantcl.bin file. The
provided infrastructure has the advantage that Tcl programmers can stay
within their favourite programming language but still can use other nice
tools easily for their documentation. In case of new may be complex
things look for existing Lua filters. As Lua is embedded into Pandoc
have a look for an existing Lua filter to not reinvent the (filter)
wheel.</p>
<h2 id="documentation">Documentation</h2>
<p>The HTML version of this document was generated using the following
commandline:</p>
<pre><code>pantcl.bin pantcl-tutorial.md pantcl-tutorial.html --css mini.css -s
--toc --lua-filter=lib/tclfilters/smallcaps.lua
</code></pre>
<p>Please look at the source Markdown file to see which Markdown code
was the input.</p>
<h2 id="links">Links</h2>
<ul>
<li><a href="https://github.com/mittelmark/pantcl">Pantcl homepage at
GitHub</a></li>
<li><a href="https://wiki.tcl-lang.org/page/pandoc%2Dtcl%2Dfilter">Discussion
page for pantcl on the Tclers Wiki</a></li>
<li><a href="http://htmlpreview.github.io/?https://github.com/mittelmark/DGTcl/blob/master/pandoc-tcl-filter/lib/tsvg/tsvg.html">Documentation
to the tsvg package</a></li>
<li><a href="https://pandoc.org/filters.html">https://pandoc.org/filters.html</a>
- background on pandoc filters</li>
<li><a href="https://github.com/pandoc/lua-filters">Pandoc lua
filters</a></li>
<li><a href="https://github.com/mvhenderson/pandoc-filter-node">https://github.com/mvhenderson/pandoc-filter-node</a>
- pandoc filters using JavaScript and TypeScript</li>
<li><a href="https://pypi.org/project/panflute/">https://pypi.org/project/panflute/</a>
- pandoc filters in Python</li>
</ul>
<h2 id="todo">Todo</h2>
<ul>
<li>code block labels (label=chunkname) - done</li>
<li>code block figures (include=false fig=true) - done</li>
<li>regular filter infrastructure for Tcl support for for instance other
filters like .csv to include csv files .dot to include dot file graphics
etc. - done (examples for dot code and tsvg plugin)</li>
<li>Windows exe / starkit containing the rl_json library as well (adding
linux library)</li>
</ul>
<h2 id="author">Author</h2>
<p><span class="citation" data-cites="2021-2023">@2021-2023</span>:
Detlef Groth, Caputh-Schwielowsee, Germany</p>
<h2 id="license">License</h2>
<p>BSD license.</p>
</body>
</html><!--Generated by HTMLArk 2024-11-26 19:28:02.988591. Original URL pantcl-tutorial.html-->