-
Notifications
You must be signed in to change notification settings - Fork 0
/
t10.geo
90 lines (76 loc) · 3.18 KB
/
t10.geo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Mesh.RecombineAll = 1;
lc = .02;
/*********************************************************************
*
* Gmsh tutorial 10
*
* General mesh size fields
*
*********************************************************************/
// In addition to specifying target mesh sizes at the points of the
// geometry (see t1) or using a background mesh (see t7), you can use
// general mesh size "Fields".
// Let's create a simple rectangular geometry
Point(1) = {0.0,0.0,0,lc}; Point(2) = {1,0.0,0,lc};
Point(3) = {1,1,0,lc}; Point(4) = {0,1,0,lc};
Point(5) = {0.2,.5,0,lc};
Line(1) = {1,2}; Line(2) = {2,3}; Line(3) = {3,4}; Line(4) = {4,1};
Line Loop(5) = {1,2,3,4}; Plane Surface(6) = {5};
// Say we would like to obtain mesh elements with size lc/30 near line 1 and
// point 5, and size lc elsewhere. To achieve this, we can use two fields:
// "Attractor", and "Threshold". We first define an Attractor field (Field[1])
// on points 5 and on line 1. This field returns the distance to point 5 and to
// (100 equidistant points on) line 1.
Field[1] = Attractor;
Field[1].NodesList = {5};
Field[1].NNodesByEdge = 100;
Field[1].EdgesList = {2};
// We then define a Threshold field, which uses the return value of the
// Attractor Field[1] in order to define a simple change in element size around
// the attractors (i.e., around point 5 and line 1)
//
// LcMax - /------------------
// /
// /
// /
// LcMin -o----------------/
// | | |
// Attractor DistMin DistMax
Field[2] = Threshold;
Field[2].IField = 1;
Field[2].LcMin = lc / 30;
Field[2].LcMax = lc;
Field[2].DistMin = 0.15;
Field[2].DistMax = 0.5;
// Say we want to modulate the mesh element sizes using a mathematical function
// of the spatial coordinates. We can do this with the MathEval field:
Field[3] = MathEval;
Field[3].F = "Cos(4*3.14*x) * Sin(4*3.14*y) / 10 + 0.101";
// We could also combine MathEval with values coming from other fields. For
// example, let's define an Attractor around point 1
Field[4] = Attractor;
Field[4].NodesList = {1};
// We can then create a MathEval field with a function that depends on the
// return value of the Attractr Field[4], i.e., depending on the distance to
// point 1 (here using a cubic law, with minumum element size = lc / 100)
Field[5] = MathEval;
Field[5].F = Sprintf("F4^3 + %g", lc / 100);
// We could also use a Box field to impose a step change in element sizes inside
// a box
Field[6] = Box;
Field[6].VIn = lc / 15;
Field[6].VOut = lc;
Field[6].XMin = 0.3;
Field[6].XMax = 0.6;
Field[6].YMin = 0.3;
Field[6].YMax = 0.6;
// Many other types of fields are available: see the reference manual for a
// complete list. You can also create fields directly in the graphical user
// interface by selecting Define->Fields in the Mesh module.
// Finally, let's use the minimum of all the fields as the background mesh field
Field[7] = Min;
Field[7].FieldsList = {2, 3, 5, 6};
Background Field = 7;
// If the boundary mesh size was too small, we could ask not to extend the
// elements sizes from the boundary inside the domain:
// Mesh.CharacteristicLengthExtendFromBoundary = 0;