-
Notifications
You must be signed in to change notification settings - Fork 301
/
candy.py
339 lines (270 loc) · 16.8 KB
/
candy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#
# DirectML FNS Candy sample
# Based on the following model: https://github.com/microsoft/Windows-Machine-Learning/blob/master/Samples/FNSCandyStyleTransfer/UWP/cs/Assets/candy.onnx
#
import pydirectml as dml
import numpy as np
from PIL import Image, ImageOps
import sys
import os
argument_count = len(sys.argv)
image_file_path = "DefaultImage.jpg"
tensor_data_path = "candy_tensor_data"
# Get user image input path if any. If none, default to image_file_path value.
if (argument_count >= 2):
image_file_path = sys.argv[1]
if (argument_count >= 3):
tensor_data_path = sys.argv[2]
if (os.path.exists(image_file_path) == False):
print("File not found at: " + str(image_file_path))
sys.exit(1)
image = Image.open(image_file_path)
image = ImageOps.fit(image, (720, 720), method = 0, bleed = 0, centering = (0.5, 0.5))
image_tensor = np.array(image, np.float32)
transposed_image = np.transpose(image_tensor, axes=[2,0,1])
# Create a GPU device and build a model graph.
device = dml.Device(True, True)
builder = dml.GraphBuilder(device)
data_type = dml.TensorDataType.FLOAT32
input = dml.input_tensor(builder, 0, dml.TensorDesc(data_type, [1, 3, 720, 720]));
flags = dml.TensorFlags.OWNED_BY_DML
# scalar1
scaler1_bias = [-103.93900299072266, -116.77899932861328, -123.68000030517578]
scaler1 = dml.value_scale_2d(input, 1.0, scaler1_bias)
# pad3
pad3 = dml.padding(scaler1, dml.PaddingMode.REFLECTION, 0.0, [0, 0, 40, 40], [0, 0, 40, 40])
# conv4
conv4_filter = dml.input_tensor(builder, 1, dml.TensorDesc(data_type, flags, [16,3,9,9]))
conv4_bias = dml.input_tensor(builder, 2, dml.TensorDesc(data_type, flags, [1,16,1,1]))
conv4 = dml.convolution(pad3, conv4_filter, conv4_bias, start_padding = [4,4], end_padding = [4,4])
# instance_norm5
instance_norm5_scale = dml.input_tensor(builder, 3, dml.TensorDesc(data_type, [1,16,1,1]))
instance_norm5_bias = dml.input_tensor(builder, 4, dml.TensorDesc(data_type, flags, [1,16,1,1]))
instance_norm5 = dml.mean_variance_normalization(conv4, instance_norm5_scale, instance_norm5_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv7
conv7_filter = dml.input_tensor(builder, 5, dml.TensorDesc(data_type, flags, [32,16,3,3]))
conv7_bias = dml.input_tensor(builder, 6, dml.TensorDesc(data_type, flags, [1,32,1,1]))
conv7 = dml.convolution(instance_norm5, conv7_filter, conv7_bias, strides = [2,2], start_padding = [1,1], end_padding = [1,1])
# instance_norm8
instance_norm8_scale = dml.input_tensor(builder, 7, dml.TensorDesc(data_type, [1,32,1,1]))
instance_norm8_bias = dml.input_tensor(builder, 8, dml.TensorDesc(data_type, flags, [1,32,1,1]))
instance_norm8 = dml.mean_variance_normalization(conv7, instance_norm8_scale, instance_norm8_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv10
conv10_filter = dml.input_tensor(builder, 9, dml.TensorDesc(data_type, flags, [64,32,3,3]))
conv10_bias = dml.input_tensor(builder, 10, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv10 = dml.convolution(instance_norm8, conv10_filter, conv10_bias, strides = [2,2], start_padding = [1,1], end_padding = [1,1])
# instance_norm11
instance_norm11_scale = dml.input_tensor(builder, 11, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm11_bias = dml.input_tensor(builder, 12, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm11 = dml.mean_variance_normalization(conv10, instance_norm11_scale, instance_norm11_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv16
conv16_filter = dml.input_tensor(builder, 13, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv16_bias = dml.input_tensor(builder, 14, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv16 = dml.convolution(instance_norm11, conv16_filter, conv16_bias)
# instance_norm17
instance_norm17_scale = dml.input_tensor(builder, 15, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm17_bias = dml.input_tensor(builder, 16, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm17 = dml.mean_variance_normalization(conv16, instance_norm17_scale, instance_norm17_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv19
conv19_filter = dml.input_tensor(builder, 17, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv19_bias = dml.input_tensor(builder, 18, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv19 = dml.convolution(instance_norm17, conv19_filter, conv19_bias)
# instance_norm15
instance_norm15_scale = dml.input_tensor(builder, 19, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm15_bias = dml.input_tensor(builder, 20, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm15 = dml.mean_variance_normalization(conv19, instance_norm15_scale, instance_norm15_bias, [0,2,3], 1, 0.000009999999747378752)
# crop21
crop21 = dml.slice(instance_norm11,[0,0,2,2],[1,64,196,196],[1,1,1,1])
# add
add = dml.add(instance_norm15, crop21)
# conv26
conv26_filter = dml.input_tensor(builder, 21, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv26_bias = dml.input_tensor(builder, 22, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv26 = dml.convolution(add, conv26_filter, conv26_bias)
# instance_norm27
instance_norm27_scale = dml.input_tensor(builder, 23, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm27_bias = dml.input_tensor(builder, 24, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm27 = dml.mean_variance_normalization(conv26, instance_norm27_scale, instance_norm27_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv29
conv29_filter = dml.input_tensor(builder, 25, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv29_bias = dml.input_tensor(builder, 26, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv29 = dml.convolution(instance_norm27, conv29_filter, conv29_bias)
# instance_norm25
instance_norm25_scale = dml.input_tensor(builder, 27, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm25_bias = dml.input_tensor(builder, 28, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm25 = dml.mean_variance_normalization(conv29, instance_norm25_scale, instance_norm25_bias, [0,2,3], 1, 0.000009999999747378752)
# crop21
crop31 = dml.slice(add,[0,0,2,2],[1,64,196-2-2,196-2-2],[1,1,1,1])
# add1
add1 = dml.add(instance_norm25, crop31)
#conv36
conv36_filter = dml.input_tensor(builder, 29, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv36_bias = dml.input_tensor(builder, 30, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv36 = dml.convolution(add1, conv36_filter, conv36_bias)
# instance_norm37
instance_norm37_scale = dml.input_tensor(builder, 31, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm37_bias = dml.input_tensor(builder, 32, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm37 = dml.mean_variance_normalization(conv36, instance_norm37_scale, instance_norm37_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv39
conv39_filter = dml.input_tensor(builder, 33, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv39_bias = dml.input_tensor(builder, 34, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv39 = dml.convolution(instance_norm37, conv39_filter, conv39_bias)
# instance_norm35
instance_norm35_scale = dml.input_tensor(builder, 35, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm35_bias = dml.input_tensor(builder, 36, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm35 = dml.mean_variance_normalization(conv39, instance_norm35_scale, instance_norm35_bias, [0,2,3], 1, 0.000009999999747378752)
# crop41
crop41 = dml.slice(add1,[0,0,2,2],[1, 64, 192-2-2, 192-2-2],[1,1,1,1])
# add2
add2 = dml.add(instance_norm35, crop41)
# conv46
conv46_filter = dml.input_tensor(builder, 37, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv46_bias = dml.input_tensor(builder, 38, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv46 = dml.convolution(add2, conv46_filter, conv46_bias)
# instance_norm47
instance_norm47_scale = dml.input_tensor(builder, 39, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm47_bias = dml.input_tensor(builder, 40, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm47 = dml.mean_variance_normalization(conv46, instance_norm47_scale, instance_norm47_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv49
conv49_filter = dml.input_tensor(builder, 41, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv49_bias = dml.input_tensor(builder, 42, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv49 = dml.convolution(instance_norm47, conv49_filter, conv49_bias)
# instance_norm45
instance_norm45_scale = dml.input_tensor(builder, 43, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm45_bias = dml.input_tensor(builder, 44, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm45 = dml.mean_variance_normalization(conv49, instance_norm45_scale, instance_norm45_bias, [0,2,3], 1, 0.000009999999747378752)
# crop51
crop51 = dml.slice(instance_norm35,[0,0,2,2],[1, 64, 188-2-2, 188-2-2],[1,1,1,1])
# add3
add3 = dml.add(instance_norm45, crop51)
# conv56
conv56_filter = dml.input_tensor(builder, 45, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv56_bias = dml.input_tensor(builder, 46, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv56 = dml.convolution(add3, conv56_filter, conv56_bias)
# instance_norm57
instance_norm57_scale = dml.input_tensor(builder, 47, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm57_bias = dml.input_tensor(builder, 48, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm57 = dml.mean_variance_normalization(conv56, instance_norm57_scale, instance_norm57_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv59
conv59_filter = dml.input_tensor(builder, 49, dml.TensorDesc(data_type, flags, [64,64,3,3]))
conv59_bias = dml.input_tensor(builder, 50, dml.TensorDesc(data_type, flags, [1,64,1,1]))
conv59 = dml.convolution(instance_norm57, conv59_filter, conv59_bias)
# instance_norm55
instance_norm55_scale = dml.input_tensor(builder, 51, dml.TensorDesc(data_type, [1,64,1,1]))
instance_norm55_bias = dml.input_tensor(builder, 52, dml.TensorDesc(data_type, flags, [1,64,1,1]))
instance_norm55 = dml.mean_variance_normalization(conv59, instance_norm55_scale, instance_norm55_bias, [0,2,3], 1, 0.000009999999747378752)
# crop61
crop61 = dml.slice(add3,[0,0,2,2],[1, 64, 184-2-2, 184-2-2],[1,1,1,1])
# add4
add4 = dml.add(instance_norm55, crop61)
# conv63
conv63_filter = dml.input_tensor(builder, 53, dml.TensorDesc(data_type, flags, [64,32,3,3]))
conv63_bias = dml.input_tensor(builder, 54, dml.TensorDesc(data_type, flags, [1,32,1,1]))
conv63 = dml.convolution(add4, conv63_filter, conv63_bias, mode = dml.ConvolutionMode.CROSS_CORRELATION, direction = dml.ConvolutionDirection.BACKWARD, strides = [2,2], start_padding = [0,0], end_padding = [0,0], output_sizes = [1,32,362,362])
# crop63
crop63 = dml.slice(conv63,[0,0,1,1],[1, 32, 362-1-1, 362-1-1],[1,1,1,1])
# instance_norm65
instance_norm65_scale = dml.input_tensor(builder, 55, dml.TensorDesc(data_type, [1,32,1,1]))
instance_norm65_bias = dml.input_tensor(builder, 56, dml.TensorDesc(data_type, flags, [1,32,1,1]))
instance_norm65 = dml.mean_variance_normalization(crop63, instance_norm65_scale, instance_norm65_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv67
conv67_filter = dml.input_tensor(builder, 57, dml.TensorDesc(data_type, flags, [32,16,3,3]))
conv67_bias = dml.input_tensor(builder, 58, dml.TensorDesc(data_type, flags, [1,16,1,1]))
conv67 = dml.convolution(instance_norm65, conv67_filter, conv67_bias, mode = dml.ConvolutionMode.CROSS_CORRELATION, direction = dml.ConvolutionDirection.BACKWARD, strides = [2,2], start_padding = [0,0], end_padding = [0,0], output_sizes = [1,16, 722,722])
# crop67
crop67 = dml.slice(conv67,[0,0,1,1],[1, 16, 722-1-1, 722-1-1],[1,1,1,1])
# instance_norm69
instance_norm69_scale = dml.input_tensor(builder, 59, dml.TensorDesc(data_type, [1,16,1,1]))
instance_norm69_bias = dml.input_tensor(builder, 60, dml.TensorDesc(data_type, flags, [1,16,1,1]))
instance_norm69 = dml.mean_variance_normalization(crop67, instance_norm69_scale, instance_norm69_bias, [0,2,3], 1, 0.000009999999747378752, dml.FusedActivation(dml.OperatorType.ACTIVATION_RELU))
# conv71
conv71_filter = dml.input_tensor(builder, 61, dml.TensorDesc(data_type, flags, [3,16,9,9]))
conv71_bias = dml.input_tensor(builder, 62, dml.TensorDesc(data_type, flags, [1,3,1,1]))
conv71 = dml.convolution(instance_norm69, conv71_filter, conv71_bias, start_padding = [4,4], end_padding = [4,4], fused_activation = dml.FusedActivation(dml.OperatorType.ACTIVATION_TANH))
# activation11
affine = dml.activation_linear(conv71, 150, 0)
# deprocess_image_2_scaled
mul_b = dml.input_tensor(builder, 63, dml.TensorDesc(data_type, [1,3,720,720], [3,1,0,0]));
image_2_scaled = dml.multiply(affine, mul_b)
# add_output
scale_b = dml.input_tensor(builder, 64, dml.TensorDesc(data_type, [1,3,720,720], [3,1,0,0]));
output_image = dml.add(image_2_scaled, scale_b)
# Compile the expression graph into a compiled operator
op = builder.build(dml.ExecutionFlags.NONE, [output_image])
# Model inputs in the previously designated order
inputs = [
(conv4_filter, "convolution_W.npy"),
(conv4_bias, "convolution_B.npy"),
(instance_norm5_scale, "InstanceNormalization_scale.npy"),
(instance_norm5_bias, "InstanceNormalization_B.npy"),
(conv7_filter, "convolution1_W.npy"),
(conv7_bias, "convolution1_B.npy"),
(instance_norm8_scale, "InstanceNormalization_scale1.npy"),
(instance_norm8_bias, "InstanceNormalization_B1.npy"),
(conv10_filter, "convolution2_W.npy"),
(conv10_bias, "convolution2_B.npy"),
(instance_norm11_scale, "InstanceNormalization_scale2.npy"),
(instance_norm11_bias, "InstanceNormalization_B2.npy"),
(conv16_filter, "convolution3_W.npy"),
(conv16_bias, "convolution3_B.npy"),
(instance_norm17_scale, "InstanceNormalization_scale3.npy"),
(instance_norm17_bias, "InstanceNormalization_B3.npy"),
(conv19_filter, "convolution4_W.npy"),
(conv19_bias, "convolution4_B.npy"),
(instance_norm15_scale, "InstanceNormalization_scale4.npy"),
(instance_norm15_bias, "InstanceNormalization_B4.npy"),
(conv26_filter, "convolution5_W.npy"),
(conv26_bias, "convolution5_B.npy"),
(instance_norm27_scale, "InstanceNormalization_scale5.npy"),
(instance_norm27_bias, "InstanceNormalization_B5.npy"),
(conv29_filter, "convolution6_W.npy"),
(conv29_bias, "convolution6_B.npy"),
(instance_norm25_scale, "InstanceNormalization_scale6.npy"),
(instance_norm25_bias, "InstanceNormalization_B6.npy"),
(conv36_filter, "convolution7_W.npy"),
(conv36_bias, "convolution7_B.npy"),
(instance_norm37_scale, "InstanceNormalization_scale7.npy"),
(instance_norm37_bias, "InstanceNormalization_B7.npy"),
(conv39_filter, "convolution8_W.npy"),
(conv39_bias, "convolution8_B.npy"),
(instance_norm35_scale, "InstanceNormalization_scale8.npy"),
(instance_norm35_bias, "InstanceNormalization_B8.npy"),
(conv46_filter, "convolution9_W.npy"),
(conv46_bias, "convolution9_B.npy"),
(instance_norm47_scale, "InstanceNormalization_scale9.npy"),
(instance_norm47_bias, "InstanceNormalization_B9.npy"),
(conv49_filter, "convolution10_W.npy"),
(conv49_bias, "convolution10_B.npy"),
(instance_norm45_scale, "InstanceNormalization_scale10.npy"),
(instance_norm45_bias, "InstanceNormalization_B10.npy"),
(conv56_filter, "convolution11_W.npy"),
(conv56_bias, "convolution11_B.npy"),
(instance_norm57_scale, "InstanceNormalization_scale11.npy"),
(instance_norm57_bias, "InstanceNormalization_B11.npy"),
(conv59_filter, "convolution12_W.npy"),
(conv59_bias, "convolution12_B.npy"),
(instance_norm55_scale, "InstanceNormalization_scale12.npy"),
(instance_norm55_bias, "InstanceNormalization_B12.npy"),
(conv63_filter, "convolution13_W.npy"),
(conv63_bias, "convolution13_B.npy"),
(instance_norm65_scale, "InstanceNormalization_scale13.npy"),
(instance_norm65_bias, "InstanceNormalization_B13.npy"),
(conv67_filter, "convolution14_W.npy"),
(conv67_bias, "convolution14_B.npy"),
(instance_norm69_scale, "InstanceNormalization_scale14.npy"),
(instance_norm69_bias, "InstanceNormalization_B14.npy"),
(conv71_filter, "convolution15_W.npy"),
(conv71_bias, "convolution15_B.npy"),
(mul_b, "Mul_B.npy"),
(scale_b, "scale_B.npy")
]
input_bindings = []
input_bindings.append(dml.Binding(input, transposed_image))
for input, file_name in inputs:
input_bindings.append(dml.Binding(input, np.load(tensor_data_path +'/' + file_name)))
# Compute the result
output_data = device.compute(op, input_bindings, [output_image])
output_tensor = np.array(output_data[0])
transposed_output_image = np.transpose(output_tensor, axes = [0,2,3,1]).squeeze()
styled_image = Image.fromarray(np.uint8(transposed_output_image))
styled_image.show()