-
Notifications
You must be signed in to change notification settings - Fork 1
/
SmartCentroider.py
433 lines (364 loc) · 21.3 KB
/
SmartCentroider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import scipy.ndimage as ndimage
from scipy.ndimage.measurements import center_of_mass, maximum_position
from scipy.signal import argrelmax, savgol_filter
import sys
import numpy as np
import new_functions as fn
import pylab as pl
class SmartCentroider(object):
'''A class for smart centroiding TimepixCam data.
Gets smart x,y,t centroids from a fileset. A ToF spectrum is generated
using a subset of the files (evenly sampled from the set)
to set the band boundaries, though they can be manually specified as well.
If use_CoM_as_centroid==False, the earliest pixel in the cluster is used,
otherwise the centre of mass of the cluster is taken as the centroid.'''
@classmethod
def DataFrom(cls, data_source):
self = SmartCentroider(data_source.filelist)
for k, v in data_source.__dict__.items():
self.__dict__[k] = v
return self
def __init__(self, filelist):
assert len(filelist)>0
# all variables must be declared here in order to be class variables
# default values go here, all can be overridden
self.__dict__['filelist'] = filelist
self.__dict__['n_tof_files'] = 50
self.__dict__['bands'] = None
self.__dict__['use_CoM_as_centroid'] = True
self.__dict__['inc_diagnoal_joins'] = True
self.__dict__['peak_range'] = 5
self.__dict__['skiplines'] = 0
self.__dict__['files_have_bunchIDs'] = False
self.__dict__['ToF_noise_threshold'] = 2
self.__dict__['savgol_window_length'] = 5
self.__dict__['sample_TOF_raw'] = None
self.__dict__['npix_per_cluster_cut'] = (4,1e9)
self.__dict__['use_gaussians'] = True
self.__dict__['gaussian_size'] = 1.5
self.__dict__['sample_TOF_smoothed'] = None
self.__dict__['peaks'] = []
self.__dict__['peak_indices'] = []
self.__dict__['ret'] = {}
self.__dict__['TMIN'] = 0
self.__dict__['TMAX'] = 11810
self.__dict__['main_TOF'] = None
self.__dict__['DEBUG'] = 1
self.__dict__['VMI_images'] = []
self.__dict__['auto_offset'] = 200
if type(filelist)==str:
import time
import cPickle as pickle
now = time.time()
pickle_file = open(filelist, 'rb')
print 'Loading from %s...'%filelist
class_contents = pickle.load(pickle_file)
pickle_file.close()
print 'Loaded in %.2fs from %s'%(time.time()-now, filelist)
for k, v in class_contents.__dict__.items():
self.__dict__[k] = v
def __setattr__(self, attribute, value):
if not attribute in self.__dict__:
print "Cannot set %s" % attribute
else:
self.__dict__[attribute] = value
def SaveToPickle(self, filename):
import time
import cPickle as pickle
now = time.time()
pickle_file = open(filename, 'wb')
pickle.dump(self, pickle_file, pickle.HIGHEST_PROTOCOL)
pickle_file.close()
print 'Saved to %s in %.2fs'%(filename, time.time()-now)
#########################################################
# Real code starts here #############################
#########################################################
def MakeSampleTOF(self):
'''Build a set of files to use for making the ToF.
The ToF can chage during delay scans etc, so it is
good to pull from across the range of files rather
than simply taking the first n files'''
n_files = len(self.filelist)
tof_fileset = []
if self.n_tof_files >= n_files: #if there fewer files that the nominal, take them all
tof_fileset = self.filelist
else:
indices = [int(np.ceil(i * n_files / self.n_tof_files)) for i in xrange(self.n_tof_files)] #evenly sample the files
if self.DEBUG >2:print 'Selecting file nums for ToF: %s'%indices
tof_fileset = [self.filelist[i] for i in indices]
if self.DEBUG >1: print 'selected %s files for ToF'%len(tof_fileset);sys.stdout.flush()
tof_imgs = []
for filename in tof_fileset: # load images
this_img = fn.TimepixFileToImage(filename, skiplines=self.skiplines, t_min=self.TMIN, t_max=self.TMAX)
if (this_img==np.zeros((256,256), dtype=np.float)).all()==True: continue # skip completely empty files, as they screw up the minimum range finding code
tof_imgs.append(this_img)
maxval = int(np.max(tof_imgs)) # get ranges for histogram
minval = int(np.min([np.min(_[_>0]) for _ in tof_imgs])) # minumum which is >0 over all images. Will crash on 0-images, but these have been removed before
ys = np.zeros(((maxval-minval)+1,), dtype=np.int64)
xs = np.linspace(minval,maxval,(maxval-minval+1)) # make x points for ToF plot
assert xs[1]-xs[0]==1 #ensure x-axis space is exactly 1
for img in tof_imgs: # histogram each imgage
ys += ndimage.histogram(img[img>0],minval,maxval,bins = (maxval-minval)+1) #much faster than pl.hist
self.sample_TOF_raw = np.zeros((maxval-minval+1,2), dtype=np.int64)
self.sample_TOF_raw[:,0] = xs
self.sample_TOF_raw[:,1] = ys
ys[ys<self.ToF_noise_threshold] = 0 # filter bins with small values
# redo the ranges after filtering out the small values:
# TODO: replace this with the bisect function
first_non_zero, last_non_zero = 0, maxval-minval
while ys[first_non_zero]<=0:
first_non_zero += 1
while ys[last_non_zero]<=0:
last_non_zero -= 1
xs = xs[first_non_zero:last_non_zero+1] # trim array
ys = ys[first_non_zero:last_non_zero+1]
new_ys = savgol_filter(ys,self.savgol_window_length,3) # smooth the ToF spectrum
self.sample_TOF_smoothed = np.zeros((len(xs),2), dtype=np.int64)
self.sample_TOF_smoothed[:,0] = xs
self.sample_TOF_smoothed[:,1] = new_ys
def CalculateBands(self):
self.peak_indices = argrelmax(self.sample_TOF_smoothed[:,1], axis=0, order=self.peak_range) # find local maxima, range of 5 each side
if self.DEBUG>=3: print 'Found %s peaks at %s'%(len(self.peaks), self.peaks); sys.stdout.flush()
self.peaks = [self.sample_TOF_smoothed[_,0] for _ in self.peak_indices[0]] # Get peak location from indices
self.bands = [] # generate banks from peaks - need to take the midpoints though!
minval = np.min(self.sample_TOF_smoothed[:,0])
maxval = np.max(self.sample_TOF_smoothed[:,0])
self.bands.append((minval,(self.peaks[0]+self.peaks[1])//2)) #first point to midpoint of first peaks
for i in xrange(1,len(self.peaks)-1):
self.bands.append((self.bands[-1][1],(self.peaks[i]+self.peaks[i+1])//2)) # loop through
self.bands.append((self.bands[-1][1],maxval))# add last midpoint to last value
def ShowTOF(self, data):
f = pl.figure(figsize=[12,4]) # Make the figure an appropriate shape
ax = pl.subplot(111)
pl.plot(data[:,0],data[:,1],'b') #plot the original ToF
pl.show()
def ShowBands(self):
f = pl.figure(figsize=[12,4]) # Make the figure an appropriate shape
ax = pl.subplot(111)
pl.plot(self.sample_TOF_raw[:,0],self.sample_TOF_raw[:,1],'b') #plot the original ToF
pl.plot(self.sample_TOF_smoothed[:,0],self.sample_TOF_smoothed[:,1],'r')#plot the new, smoothed ToF
if self.peak_indices!=[]: pl.plot(self.peaks,[-10 for _ in self.peak_indices[0]],'bo') # plot peaks in blue
pl.plot([_[0] for _ in self.bands],[10 for _ in self.bands],'ro') # plot left band boundaries in red
pl.plot([_[1] for _ in self.bands],[10 for _ in self.bands],'ro') # plot right band boundaries in red too
ticks = [] # use ticks to display band edges
for (a, b) in self.bands: # TODO: This could be more elegant
if a not in ticks: ticks.append(a)
if b not in ticks: ticks.append(b)
ticks = sorted(ticks) # don't know if this is necessary but doesn't hurt
ax.set_xticks(ticks, minor=False)
ax.xaxis.grid(True, which='major')
# set plots limits
plot_range = (np.min(self.sample_TOF_smoothed[:,0]),np.max(self.sample_TOF_smoothed[:,0]))
pl.xlim(plot_range[0]-10,plot_range[1]+10)
# TODO: add a legend saying that colours are what
if self.DEBUG>=1:
print 'Peaks at %s'%self.peaks
print 'Bands set at %s'%self.bands;sys.stdout.flush()
pl.show()
def FindClusters(self):
if self.DEBUG>=2: print 'Using %s bands...'%len(self.bands);sys.stdout.flush()
if self.inc_diagnoal_joins:
struct_el=[[1,1,1],[1,1,1],[1,1,1]] # for including diagonal connections as well
else:
struct_el=[[0,1,0],[1,1,1],[0,1,0]] # for vertical/horizontal connections only
# xs, ys, ts = [], [], [] #return lists
for filenum, filename in enumerate(self.filelist):
if filenum%500==0: print 'Smart centroided %s of %s files...'%(filenum, len(self.filelist));sys.stdout.flush()
if self.files_have_bunchIDs: # if we're using bunchIDs then use these as keys in return dict
fileID = fn.GetBunchIDFromFile(filename)
else: #otherwise use the filenames
fileID = filename
self.ret[fileID]={'xs':[],'ys':[],'ts':[],'npixs':[]}
img = fn.TimepixFileToImage(filename, skiplines=self.skiplines, t_min=self.TMIN, t_max=self.TMAX)
segmentation, segments = ndimage.label(img, struct_el) # find clusters
if self.DEBUG>2: print 'Found %s clusters without using band information'%segments;sys.stdout.flush()
if self.DEBUG>3: self.DebugPlot(segmentation, 'Segmented image not using bands:')
seg_sum = 0
for bandnum,(tmin, tmax) in enumerate(self.bands): # Process each band in turn
band_img = img.copy() # make a copy
# TODO: Check that the correct edge is being included/excluded so you're not taking one band edge
# twice and the other not at all!
band_img[band_img > tmax] = 0 # threshold the new image
band_img[band_img <= tmin] = 0
if self.DEBUG>=3: title = self.DebugPlot(band_img, 'Band %s (%s - %s) image:'%(bandnum, tmin, tmax))
# find clusters
segmentation, segments = ndimage.label(band_img, struct_el)
seg_sum += segments
if self.DEBUG>=3: print 'Found %s segs in band %s (%s - %s)'%(segments, bandnum, tmin, tmax);sys.stdout.flush()
# Get centroids from clusters using specified method:
if self.use_CoM_as_centroid: # use center of mass weighting
com_img = np.zeros_like(band_img) # make an array with ones at all hits, zeros everywhere else
com_img[np.nonzero(band_img)] = 1 # otherwise you weight the CoM by the pixel value, not one
CoMs = center_of_mass(com_img, segmentation, [_ for _ in xrange(1, segments+1)])
# NB do not replace with enumerate, you need to know the actual number for each cluster - think about it.
for clust_num in xrange(1, segments+1): # cluster 0 = background so skip it
clust_pix_index = np.where(segmentation==clust_num) # find pixels associated with cluster
self.ret[fileID]['ts'].append(np.max(img[clust_pix_index]))
self.ret[fileID]['xs'].append(CoMs[clust_num-1][0]+0.5) # note these are zero-based from before, so need to -1
self.ret[fileID]['ys'].append(CoMs[clust_num-1][1]+0.5)
self.ret[fileID]['npixs'].append(len(clust_pix_index[0]))
else: # Take the earliest timecode in the cluster as the centroid
max_positions = maximum_position(band_img, segmentation, [_ for _ in xrange(1,segments+1)])
for clust_num in xrange(1, segments+1): # cluster 0 = background so skip it
self.ret[fileID]['ts'].append(img[max_positions[clust_num-1]])
self.ret[fileID]['xs'].append(max_positions[clust_num-1][0] +.5)
self.ret[fileID]['ys'].append(max_positions[clust_num-1][1] +.5)
npix = len(segmentation[segmentation==(clust_num)])
self.ret[fileID]['npixs'].append(npix)
if self.DEBUG>=2: print 'CoMs for band %s: %s'%(bandnum, CoMs);sys.stdout.flush()
# index = (np.asarray([_[0] for _ in CoMs]),np.asarray([[_[1] for _ in CoMs]]))
# codes = img[CoMs]
if self.DEBUG>=2: print 'Found %s clusters when using bands'%seg_sum;sys.stdout.flush()
print 'Finished smart centroiding %s files...'%(len(self.filelist));sys.stdout.flush()
def MakeSingleVMI(self, band, round_centroid_coords=False, only_use_n_files=1e15):
import time
ret_img = np.zeros((256,256), dtype=np.float64)
now = time.time()
for filenum, datafilename in enumerate(sorted(self.ret.keys())[:min(only_use_n_files,len(self.ret.keys()))]):
if filenum == 500:
dt = time.time() - now
print 'Estimated time for completion is another %.1f seconds...'%(dt * min(only_use_n_files,len(self.ret.keys()))/500.)
for x,y,t,npix in zip(self.ret[datafilename]['xs'],
self.ret[datafilename]['ys'],
self.ret[datafilename]['ts'],
self.ret[datafilename]['npixs']):
if (npix<self.npix_per_cluster_cut[0]) or (npix>self.npix_per_cluster_cut[1]): continue # apply cluster threshold
if t >= band[0] and t<band[1]: # check cluster is within band
if self.use_gaussians: # add a gaussian if using them
ret_img += fn.makeGaussian(256,1,self.gaussian_size,[x,y])
else: # otherwise, make coordinate integers in the correct way and increment that pixel
if round_centroid_coords:
x = int(np.round(x,0))
y = int(np.round(y,0))
else:
x = int(x)
y = int(y)
ret_img[x][y] += 1
return ret_img
def MakeVMIsFromBands(self, custom_bands=None, round_centroid_coords=False, only_use_n_files=1e15):
'''Produce VMI images from centroided clusters for each band defined.
Custom bands can be provided here, and will not overwrite the main band definitions.
If using Gaussians, exact centroids are always used.
If not using Gaussians, if round_centroid_coords==True the nearest pixel is used, otherwise, it is'''
# TODO: put in a time estimator for this stage as it can be very slow. Might need to loop over band inside files instead of the other way around.
# import time
if custom_bands is None: custom_bands = self.bands # default to the defined bands if they're not provided
self.VMI_images = [np.zeros((256,256), dtype=np.float64) for _ in custom_bands] # create images
# now = time.time()
for band_num, t_range in enumerate(custom_bands): # loop over bands
if self.DEBUG>=0:print 'Processing band %s of %s'%(band_num+1, len(self.bands)); sys.stdout.flush()
#loop over clusters, file by file, using only first n files if specified.
for filenum, datafilename in enumerate(sorted(self.ret.keys())[:min(only_use_n_files,len(self.ret.keys()))]):
# if filenum == 50:
# dt = time.time() - now
# print 'Estimated time for completion is another %s seconds...'%
for x,y,t,npix in zip(self.ret[datafilename]['xs'],
self.ret[datafilename]['ys'],
self.ret[datafilename]['ts'],
self.ret[datafilename]['npixs']):
if (npix<self.npix_per_cluster_cut[0]) or (npix>self.npix_per_cluster_cut[1]): continue # apply cluster threshold
if t >= t_range[0] and t<t_range[1]: # check cluster is within band
if self.use_gaussians: # add a gaussian if using them
self.VMI_images[band_num] += fn.makeGaussian(256,1,self.gaussian_size,[x,y])
else: # otherwise, make coordinate integers in the correct way and increment that pixel
if round_centroid_coords:
x = int(np.round(x,0))
y = int(np.round(y,0))
else:
x = int(x)
y = int(y)
self.VMI_images[band_num][x][y] += 1
def BuildMainTOF(self):
all_ts = []
for k, v in self.ret.items():
all_ts.extend(v['ts'])
print 'Found %s timecodes after centroiding'%len(all_ts)
all_ts = np.asarray(all_ts)
minval = int(np.min(all_ts))
maxval = int(np.max(all_ts))
ys = np.zeros(((maxval-minval)+1,), dtype=np.int64)
xs = np.linspace(minval,maxval,(maxval-minval+1)) # make x points for ToF plot
assert xs[1]-xs[0]==1 #ensure x-axis space is exactly 1
ys += ndimage.histogram(all_ts,minval,maxval,bins = (maxval-minval)+1)
self.main_TOF = np.zeros((len(xs),2), dtype=np.int64)
self.main_TOF[:,0] = xs
self.main_TOF[:,1] = ys
def PrintBandsForEditing(self, one_band_per_line=True):
'''Print out the band definitions in a format useful for editing.'''
if one_band_per_line:
print 'bands = [' + str(self.bands[0]) + ','
for band in self.bands[1:-1]:
print ' ' + str(band) + ','
print ' ' + str(self.bands[-1]) + ']'
else:
print 'bands = %s'%self.bands
def DebugPlot(self, data, title=''):
print title; sys.stdout.flush()
f = pl.figure(figsize=[8,8])
pl.imshow(data, origin='bl')
pl.show()
def ShowAllVMIs(self, vmin=None, vmax=None, cmap='jet', white_background=False, white_background_threshold=0.1, save_path=None):
for im_num, image in enumerate(self.VMI_images):
if save_path:
savefig = save_path + 'VMI_%s.png'%im_num
else:
savefig = None
self.ShowVMIimage(image, vmin=vmin, vmax=vmax, cmap=cmap, white_background=white_background, white_background_threshold=white_background_threshold, savefig=savefig)
def ShowVMIimage(self, image, vmin=None, vmax=None, cmap='jet', title = '', savefig='', white_background=False, white_background_threshold=0.1):
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig = pl.figure(figsize = [10,10])
ax = fig.add_subplot(111)
if vmax == 'auto':
element = (256*256) - self.auto_offset - 1
tmp = image.flatten()
tmp.sort()
vmax = tmp[element]
vmin = tmp[self.auto_offset]
print 'Auto vmax = %s, real max = %s'%(vmax, np.max(image))
if vmin == 'auto':
tmp = image.flatten()
vmin = min(_ for _ in tmp if _ > 0)
print 'Auto vmin = %s'%vmin
display_image = image.copy()
if white_background:
vmin = max(vmin, white_background_threshold)
display_image[display_image<=white_background_threshold]=np.nan
im = ax.imshow(display_image, vmin=vmin, vmax=vmax, cmap=cmap, interpolation='nearest', origin='bl')
ax.set_title(title)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
pl.colorbar(im, cax=cax)
if savefig: fig.savefig(savefig)
return im
# def ShowVMIimage(self, image, title=''):
# print title; sys.stdout.flush()
# f = pl.figure(figsize=[8,8])
# pl.imshow(image)
# pl.show()
def GetClusterSizeList(self):
cluster_sizes = []
for k, v in self.ret.items():
cluster_sizes.extend(v['npixs'])
return cluster_sizes
def PlotClusterSizeHistogram(self):
import pylab as plt
cluster_sizes = GetClusterSizeList(self)
plt.figure(figsize=(12,4))
plt.hist(cluster_sizes, bins = 50, range=(0,50)) # hardcoded, with binsize==1
def run(self):
self.MakeSampleTOF()
if self.DEBUG>=2:
print 'Raw ToF spectrum for sample files'
self.ShowTOF(self.sample_TOF_raw)
if self.DEBUG>=1:
print 'Smoothed, noise suppressed and truncated ToF spectrum for sample files'
self.ShowTOF(self.sample_TOF_smoothed)
if not self.bands:
self.CalculateBands()
if self.DEBUG>=0: self.ShowBands()
self.FindClusters()
self.BuildMainTOF()
# self.MakeVMIsFromBands()
# self.ShowAllVMIs()
# return self.ret.copy()