-
Notifications
You must be signed in to change notification settings - Fork 13
/
utils.py
192 lines (164 loc) · 5.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding: utf-8
from __future__ import print_function
import os
import sys
import time
import logging
from datetime import datetime
from functools import partial
import torch
import torch.nn.functional as F
import collections
import shutil
from dataset import dataset
from config import *
term_width = 200
TOTAL_BAR_LENGTH = 6.
last_time = time.time()
begin_time = last_time
#########################################
# Functions #
#########################################
def mk_save(dir, cfg_dir):
make_dir = os.path.join(dir, datetime.now().strftime('%Y%m%d_%H%M%S'))
if os.path.exists(make_dir):
raise NameError('model dir exists!')
print(make_dir)
os.makedirs(make_dir)
print('----save_dir:',make_dir)
cfg_file = os.path.join(cfg_dir, 'config.py')
shutil.copy(cfg_file, make_dir)
return make_dir
def dataloader(data_dir, num_workers):
trainset = dataset.CUB(root=data_dir, is_train=True, data_len=None)
testset = dataset.CUB(root=data_dir, is_train=False, data_len=None)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE,
shuffle=True, num_workers=0, drop_last=False)
testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE,
shuffle=False, num_workers=0, drop_last=False)
return trainset, testset, trainloader, testloader
def params_extract(model):
base_params = []
base_names = []
base_bias_params = []
base_bias_names = []
slim_params = []
slim_names = []
for name, param in model.named_parameters():
if param.requires_grad:
if name.endswith('bias'):
base_bias_params.append(param)
base_bias_names.append(name)
elif name.endswith('weight'):
for j in name.split('.'):
if (j == 'bn1' or j == 'bn2'):
slim_params.append(param)
slim_names.append(name)
return slim_params
def no_b_bn_resume(model, ckpt_dict):
net_dict = model.state_dict()
bn_b_dict = dict()
for k, v in model.state_dict().items():
for i in k.split('.'):
if (i == 'bn1' or i == 'bn2' or i == 'bn3') and k.endswith('bias'):
bn_b_dict[k] = v
pre_dict = {k: v for k, v in ckpt_dict.items() if k in net_dict and k not in bn_b_dict}
net_dict.update(pre_dict)
return net_dict
def params_count(net):
n_parameters = sum(p.numel() for p in net.parameters())
print('-----Model Size: {:.5f}M'.format(n_parameters/1e6))
def L1_penalty(var):
return torch.abs(var).sum()
def print_tensor_dict(params):
kmax = max(len(key) for key in params.keys())
for i, (key, v) in enumerate(params.items()):
print(str(i).ljust(5), key.ljust(kmax + 3), str(tuple(v.shape)).ljust(23), torch.typename(v), v.requires_grad)
def progress_bar(current,
total,
loss,
l1=None,
lr=None,
msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH * current / total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
L.append(' | loss: {:.4f}'.format(loss))
if l1:
L.append(' | L1:{:.6f}'.format(l1))
if lr:
L.append(' | lr:{:.6f}'.format(lr))
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width - int(TOTAL_BAR_LENGTH) - len(msg) - 3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width - int(TOTAL_BAR_LENGTH / 2)):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current + 1, total))
if current < total - 1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def L1_penalty(var):
return torch.abs(var).sum()
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def init_log(output_dir):
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(message)s',
datefmt='%Y%m%d-%H:%M:%S',
filename=os.path.join(output_dir, 'log.log'),
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger('').addHandler(console)
return logging
if __name__ == '__main__':
pass