-
Notifications
You must be signed in to change notification settings - Fork 81
/
ras-arm-handler.c
608 lines (531 loc) · 17.6 KB
/
ras-arm-handler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <traceevent/kbuffer.h>
#include <unistd.h>
#include "non-standard-ampere.h"
#include "ras-arm-handler.h"
#include "ras-cpu-isolation.h"
#include "ras-logger.h"
#include "ras-non-standard-handler.h"
#include "ras-report.h"
#include "types.h"
#define ARM_ERR_VALID_ERROR_COUNT BIT(0)
#define ARM_ERR_VALID_FLAGS BIT(1)
#define BIT2 2
#define ARM_INFO_VALID_MULTI_ERR BIT(0)
#define ARM_INFO_VALID_FLAGS BIT(1)
#define ARM_INFO_VALID_ERR_INFO BIT(2)
#define ARM_INFO_VALID_VIRT_ADDR BIT(3)
#define ARM_INFO_VALID_PHYSICAL_ADDR BIT(4)
#define ARM_INFO_FLAGS_FIRST BIT(0)
#define ARM_INFO_FLAGS_LAST BIT(1)
#define ARM_INFO_FLAGS_PROPAGATED BIT(2)
#define ARM_INFO_FLAGS_OVERFLOW BIT(3)
#define ARM_ERR_TYPE_MASK GENMASK(4, 1)
#define ARM_CACHE_ERROR BIT(1)
#define ARM_TLB_ERROR BIT(2)
#define ARM_BUS_ERROR BIT(3)
#define ARM_VENDOR_ERROR BIT(4)
#define ARM_ERR_VALID_TRANSACTION_TYPE BIT(0)
#define ARM_ERR_VALID_OPERATION_TYPE BIT(1)
#define ARM_ERR_VALID_LEVEL BIT(2)
#define ARM_ERR_VALID_PROC_CONTEXT_CORRUPT BIT(3)
#define ARM_ERR_VALID_CORRECTED BIT(4)
#define ARM_ERR_VALID_PRECISE_PC BIT(5)
#define ARM_ERR_VALID_RESTARTABLE_PC BIT(6)
#define ARM_ERR_VALID_PARTICIPATION_TYPE BIT(7)
#define ARM_ERR_VALID_TIME_OUT BIT(8)
#define ARM_ERR_VALID_ADDRESS_SPACE BIT(9)
#define ARM_ERR_VALID_MEM_ATTRIBUTES BIT(10)
#define ARM_ERR_VALID_ACCESS_MODE BIT(11)
#define ARM_ERR_TRANSACTION_SHIFT 16
#define ARM_ERR_TRANSACTION_MASK GENMASK(1, 0)
#define ARM_ERR_OPERATION_SHIFT 18
#define ARM_ERR_OPERATION_MASK GENMASK(3, 0)
#define ARM_ERR_LEVEL_SHIFT 22
#define ARM_ERR_LEVEL_MASK GENMASK(2, 0)
#define ARM_ERR_PC_CORRUPT_SHIFT 25
#define ARM_ERR_PC_CORRUPT_MASK GENMASK(0, 0)
#define ARM_ERR_CORRECTED_SHIFT 26
#define ARM_ERR_CORRECTED_MASK GENMASK(0, 0)
#define ARM_ERR_PRECISE_PC_SHIFT 27
#define ARM_ERR_PRECISE_PC_MASK GENMASK(0, 0)
#define ARM_ERR_RESTARTABLE_PC_SHIFT 28
#define ARM_ERR_RESTARTABLE_PC_MASK GENMASK(0, 0)
#define ARM_ERR_PARTICIPATION_TYPE_SHIFT 29
#define ARM_ERR_PARTICIPATION_TYPE_MASK GENMASK(1, 0)
#define ARM_ERR_TIME_OUT_SHIFT 31
#define ARM_ERR_TIME_OUT_MASK GENMASK(0, 0)
#define ARM_ERR_ADDRESS_SPACE_SHIFT 32
#define ARM_ERR_ADDRESS_SPACE_MASK GENMASK(1, 0)
#define ARM_ERR_MEM_ATTRIBUTES_SHIFT 34
#define ARM_ERR_MEM_ATTRIBUTES_MASK GENMASK(8, 0)
#define ARM_ERR_ACCESS_MODE_SHIFT 43
#define ARM_ERR_ACCESS_MODE_MASK GENMASK(0, 0)
void display_raw_data(struct trace_seq *s,
const uint8_t *buf,
uint32_t datalen)
{
int i = 0, line_count = 0;
trace_seq_printf(s, " %08x: ", i);
while (datalen >= 4) {
print_le_hex(s, buf, i);
i += 4;
datalen -= 4;
if (++line_count == 4) {
trace_seq_printf(s, "\n %08x: ", i);
line_count = 0;
} else {
trace_seq_printf(s, " ");
}
}
}
static const char * const arm_proc_error_type_strs[] = {
"",
"cache error",
"TLB error",
"bus error",
"micro-architectural error",
};
static const char * const arm_proc_error_flags_strs[] = {
"first error ",
"last error",
"propagated error",
"overflow",
};
static const char * const arm_err_trans_type_strs[] = {
"Instruction",
"Data Access",
"Generic",
};
static const char * const arm_bus_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
};
static const char * const arm_cache_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
"Eviction",
"Snooping (processor initiated a cache snoop that resulted in an error)",
"Snooped (processor raised a cache error caused by another processor or device snooping its cache)",
"Management",
};
static const char * const arm_tlb_err_op_strs[] = {
"Generic error (type cannot be determined)",
"Generic read (type of instruction or data request cannot be determined)",
"Generic write (type of instruction of data request cannot be determined)",
"Data read",
"Data write",
"Instruction fetch",
"Prefetch",
"Local management operation (processor initiated a TLB management operation that resulted in an error)",
"External management operation (processor raised a TLB error caused by another processor or device broadcasting TLB operations)",
};
static const char * const arm_bus_err_part_type_strs[] = {
"Local processor originated request",
"Local processor responded to request",
"Local processor observed",
"Generic",
};
static const char * const arm_bus_err_addr_space_strs[] = {
"External Memory Access",
"Internal Memory Access",
"Unknown",
"Device Memory Access",
};
static int decode_err_data_bits(char *buf, unsigned long data,
const char **data_str, size_t str_size)
{
int bit;
if (!buf || !data_str || !str_size)
return -1;
for (bit = 0; bit < str_size; bit++)
if (data & BIT(bit))
mce_snprintf(buf, " %s", ((char *)data_str[bit]));
return 0;
}
static void parse_arm_err_info(struct trace_seq *s, uint32_t type, uint64_t error_info)
{
uint8_t trans_type, op_type, level, participation_type, address_space;
uint16_t mem_attributes;
bool proc_context_corrupt, corrected, precise_pc, restartable_pc;
bool time_out, access_mode;
/*
* Vendor type errors have error information values that are vendor
* specific.
*/
if (type & ARM_VENDOR_ERROR)
return;
if (error_info & ARM_ERR_VALID_TRANSACTION_TYPE) {
trans_type = ((error_info >> ARM_ERR_TRANSACTION_SHIFT)
& ARM_ERR_TRANSACTION_MASK);
if (trans_type < ARRAY_SIZE(arm_err_trans_type_strs))
trace_seq_printf(s, " transaction type:%s",
arm_err_trans_type_strs[trans_type]);
}
if (error_info & ARM_ERR_VALID_OPERATION_TYPE) {
op_type = ((error_info >> ARM_ERR_OPERATION_SHIFT)
& ARM_ERR_OPERATION_MASK);
if (type & ARM_CACHE_ERROR) {
if (op_type < ARRAY_SIZE(arm_cache_err_op_strs))
trace_seq_printf(s, " cache error, operation type:%s",
arm_cache_err_op_strs[op_type]);
}
if (type & ARM_TLB_ERROR) {
if (op_type < ARRAY_SIZE(arm_tlb_err_op_strs)) {
trace_seq_printf(s, " TLB error, operation type: %s",
arm_tlb_err_op_strs[op_type]);
}
}
if (type & ARM_BUS_ERROR) {
if (op_type < ARRAY_SIZE(arm_bus_err_op_strs)) {
trace_seq_printf(s, " bus error, operation type: %s",
arm_bus_err_op_strs[op_type]);
}
}
}
if (error_info & ARM_ERR_VALID_LEVEL) {
level = ((error_info >> ARM_ERR_LEVEL_SHIFT)
& ARM_ERR_LEVEL_MASK);
if (type & ARM_CACHE_ERROR)
trace_seq_printf(s, " cache level: %d", level);
if (type & ARM_TLB_ERROR)
trace_seq_printf(s, " TLB level: %d", level);
if (type & ARM_BUS_ERROR)
trace_seq_printf(s, " affinity level at which the bus error occurred: %d",
level);
}
if (error_info & ARM_ERR_VALID_PROC_CONTEXT_CORRUPT) {
proc_context_corrupt = ((error_info >> ARM_ERR_PC_CORRUPT_SHIFT)
& ARM_ERR_PC_CORRUPT_MASK);
if (proc_context_corrupt)
trace_seq_printf(s, " processor context corrupted");
else
trace_seq_printf(s, " processor context not corrupted");
}
if (error_info & ARM_ERR_VALID_CORRECTED) {
corrected = ((error_info >> ARM_ERR_CORRECTED_SHIFT)
& ARM_ERR_CORRECTED_MASK);
if (corrected)
trace_seq_printf(s, " the error has been corrected");
else
trace_seq_printf(s, " the error has not been corrected");
}
if (error_info & ARM_ERR_VALID_PRECISE_PC) {
precise_pc = ((error_info >> ARM_ERR_PRECISE_PC_SHIFT)
& ARM_ERR_PRECISE_PC_MASK);
if (precise_pc)
trace_seq_printf(s, " PC is precise");
else
trace_seq_printf(s, " PC is imprecise");
}
if (error_info & ARM_ERR_VALID_RESTARTABLE_PC) {
restartable_pc = ((error_info >> ARM_ERR_RESTARTABLE_PC_SHIFT)
& ARM_ERR_RESTARTABLE_PC_MASK);
if (restartable_pc)
trace_seq_printf(s, " Program execution can be restartable reliably at the PC");
}
/* The rest of the fields are specific to bus errors */
if (type != ARM_BUS_ERROR)
return;
if (error_info & ARM_ERR_VALID_PARTICIPATION_TYPE) {
participation_type = ((error_info >> ARM_ERR_PARTICIPATION_TYPE_SHIFT)
& ARM_ERR_PARTICIPATION_TYPE_MASK);
if (participation_type < ARRAY_SIZE(arm_bus_err_part_type_strs)) {
trace_seq_printf(s, " participation type: %s",
arm_bus_err_part_type_strs[participation_type]);
}
}
if (error_info & ARM_ERR_VALID_TIME_OUT) {
time_out = ((error_info >> ARM_ERR_TIME_OUT_SHIFT)
& ARM_ERR_TIME_OUT_MASK);
if (time_out)
trace_seq_printf(s, " request timed out");
}
if (error_info & ARM_ERR_VALID_ADDRESS_SPACE) {
address_space = ((error_info >> ARM_ERR_ADDRESS_SPACE_SHIFT)
& ARM_ERR_ADDRESS_SPACE_MASK);
if (address_space < ARRAY_SIZE(arm_bus_err_addr_space_strs)) {
trace_seq_printf(s, " address space: %s",
arm_bus_err_addr_space_strs[address_space]);
}
}
if (error_info & ARM_ERR_VALID_MEM_ATTRIBUTES) {
mem_attributes = ((error_info >> ARM_ERR_MEM_ATTRIBUTES_SHIFT)
& ARM_ERR_MEM_ATTRIBUTES_MASK);
trace_seq_printf(s, " memory access attributes:0x%x",
mem_attributes);
}
if (error_info & ARM_ERR_VALID_ACCESS_MODE) {
access_mode = ((error_info >> ARM_ERR_ACCESS_MODE_SHIFT)
& ARM_ERR_ACCESS_MODE_MASK);
if (access_mode)
trace_seq_printf(s, " access mode: normal");
else
trace_seq_printf(s, " access mode: secure");
}
}
static int parse_arm_processor_err_info(struct trace_seq *s, struct ras_arm_event *ev)
{
int err_info_size = sizeof(struct ras_arm_err_info);
struct ras_arm_err_info *err_info;
int i, num_pei;
if (ev->pei_len % err_info_size != 0) {
log(TERM, LOG_ERR,
"The event data does not match to the ARM Processor Error Information Structure\n");
return -1;
}
num_pei = ev->pei_len / err_info_size;
err_info = (struct ras_arm_err_info *)(ev->pei_error);
trace_seq_printf(s, "\nARM processor error info:\n");
for (i = 0; i < num_pei; ++i) {
decode_err_data_bits(ev->error_types, err_info->type,
(const char **)arm_proc_error_type_strs,
ARRAY_SIZE(arm_proc_error_type_strs));
trace_seq_printf(s, " error_types:%s", ev->error_types);
if (err_info->validation_bits & ARM_ERR_VALID_ERROR_COUNT) {
ev->error_count = err_info->multiple_error + 1;
trace_seq_printf(s, " error_count:%d", ev->error_count);
}
if (err_info->validation_bits & ARM_INFO_VALID_FLAGS) {
decode_err_data_bits(ev->error_flags, err_info->flags,
(const char **)arm_proc_error_flags_strs,
ARRAY_SIZE(arm_proc_error_flags_strs));
trace_seq_printf(s, " error_flags:%s", ev->error_flags);
}
if (err_info->validation_bits & ARM_INFO_VALID_ERR_INFO) {
ev->error_info = err_info->error_info;
trace_seq_printf(s, " error_info: 0x%016llx",
(unsigned long long)ev->error_info);
parse_arm_err_info(s, err_info->type, ev->error_info);
}
if (err_info->validation_bits & ARM_INFO_VALID_VIRT_ADDR) {
ev->virt_fault_addr = err_info->virt_fault_addr;
trace_seq_printf(s, " virtual fault address: 0x%016llx",
(unsigned long long)err_info->virt_fault_addr);
}
if (err_info->validation_bits & ARM_INFO_VALID_PHYSICAL_ADDR) {
ev->phy_fault_addr = err_info->physical_fault_addr;
trace_seq_printf(s, " physical fault address: 0x%016llx",
(unsigned long long)err_info->physical_fault_addr);
}
trace_seq_printf(s, "\n");
err_info += 1;
}
return 0;
}
#ifdef HAVE_CPU_FAULT_ISOLATION
static int is_core_failure(struct ras_arm_err_info *err_info)
{
if (err_info->validation_bits & ARM_ERR_VALID_FLAGS) {
/*
* core failure:
* Bit 0\1\3: (at lease 1)
* Bit 2: 0
*/
return (err_info->flags & 0xf) && !(err_info->flags & (0x1 << BIT2));
}
return 0;
}
static int count_errors(struct ras_arm_event *ev, int sev)
{
struct ras_arm_err_info *err_info;
int num_pei;
int err_info_size = sizeof(struct ras_arm_err_info);
int num = 0;
int i;
int error_count;
if (ev->pei_len % err_info_size != 0) {
log(TERM, LOG_ERR,
"The event data does not match to the ARM Processor Error Information Structure\n");
return num;
}
num_pei = ev->pei_len / err_info_size;
err_info = (struct ras_arm_err_info *)(ev->pei_error);
for (i = 0; i < num_pei; ++i) {
error_count = 1;
if (err_info->validation_bits & ARM_ERR_VALID_ERROR_COUNT) {
/*
* The value of this field is defined as follows:
* 0: Single Error
* 1: Multiple Errors
* 2-65535: Error Count
*/
error_count = err_info->multiple_error + 1;
}
if (sev == GHES_SEV_RECOVERABLE && !is_core_failure(err_info))
error_count = 0;
num += error_count;
err_info += 1;
}
log(TERM, LOG_INFO, "%d error in cpu core caught\n", num);
return num;
}
static int ras_handle_cpu_error(struct trace_seq *s,
struct tep_record *record,
struct tep_event *event,
struct ras_arm_event *ev, time_t now)
{
unsigned long long val;
int cpu;
char *severity;
struct error_info err_info;
if (tep_get_field_val(s, event, "cpu", record, &val, 1) < 0)
return -1;
cpu = val;
trace_seq_printf(s, "\n cpu: %d", cpu);
/* record cpu error */
if (tep_get_field_val(s, event, "sev", record, &val, 1) < 0)
return -1;
/* refer to UEFI_2_9 specification chapter N2.2 Table N-5 */
switch (val) {
case GHES_SEV_NO:
severity = "Informational";
break;
case GHES_SEV_CORRECTED:
severity = "Corrected";
break;
case GHES_SEV_RECOVERABLE:
severity = "Recoverable";
break;
default:
case GHES_SEV_PANIC:
severity = "Fatal";
}
trace_seq_printf(s, "\n severity: %s", severity);
if (val == GHES_SEV_CORRECTED || val == GHES_SEV_RECOVERABLE) {
int nums = count_errors(ev, val);
if (nums > 0) {
err_info.nums = nums;
err_info.time = now;
err_info.err_type = val;
ras_record_cpu_error(&err_info, cpu);
}
}
return 0;
}
#endif
int ras_arm_event_handler(struct trace_seq *s,
struct tep_record *record,
struct tep_event *event, void *context)
{
unsigned long long val;
struct ras_events *ras = context;
time_t now;
struct tm *tm;
struct ras_arm_event ev;
int len = 0;
memset(&ev, 0, sizeof(ev));
/*
* Newer kernels (3.10-rc1 or upper) provide an uptime clock.
* On previous kernels, the way to properly generate an event would
* be to inject a fake one, measure its timestamp and diff it against
* gettimeofday. We won't do it here. Instead, let's use uptime,
* falling-back to the event report's time, if "uptime" clock is
* not available (legacy kernels).
*/
if (ras->use_uptime)
now = record->ts / user_hz + ras->uptime_diff;
else
now = time(NULL);
tm = localtime(&now);
if (tm)
strftime(ev.timestamp, sizeof(ev.timestamp),
"%Y-%m-%d %H:%M:%S %z", tm);
trace_seq_printf(s, "%s", ev.timestamp);
if (tep_get_field_val(s, event, "affinity", record, &val, 1) < 0)
return -1;
ev.affinity = val;
trace_seq_printf(s, " affinity: %d", ev.affinity);
if (tep_get_field_val(s, event, "mpidr", record, &val, 1) < 0)
return -1;
ev.mpidr = val;
trace_seq_printf(s, " MPIDR: 0x%llx", (unsigned long long)ev.mpidr);
if (tep_get_field_val(s, event, "midr", record, &val, 1) < 0)
return -1;
ev.midr = val;
trace_seq_printf(s, " MIDR: 0x%llx", (unsigned long long)ev.midr);
if (tep_get_field_val(s, event, "running_state", record, &val, 1) < 0)
return -1;
ev.running_state = val;
trace_seq_printf(s, " running_state: %d", ev.running_state);
if (tep_get_field_val(s, event, "psci_state", record, &val, 1) < 0)
return -1;
ev.psci_state = val;
trace_seq_printf(s, " psci_state: %d", ev.psci_state);
/* Upstream Kernels up to version 6.10 don't decode UEFI 2.6+ N.17 table */
if (tep_get_field_val(s, event, "pei_len", record, &val, 1) >= 0) {
bool legacy_patch = false;
ev.pei_len = val;
trace_seq_printf(s, " ARM Processor Err Info data len: %d\n",
ev.pei_len);
ev.pei_error = tep_get_field_raw(s, event, "pei_buf", record, &len, 1);
if (!ev.pei_error) {
/* Keep support for OOT CPER N.16/N.17 full table patch */
ev.pei_error = tep_get_field_raw(s, event, "buf", record, &len, 1);
if (!ev.pei_error)
return -1;
legacy_patch = true;
}
display_raw_data(s, ev.pei_error, ev.pei_len);
parse_arm_processor_err_info(s, &ev);
if (tep_get_field_val(s, event, "ctx_len", record, &val, 1) < 0)
return -1;
ev.ctx_len = val;
trace_seq_printf(s, " ARM Processor Err Context Info data len: %d\n",
ev.ctx_len);
if (!legacy_patch)
ev.ctx_error = tep_get_field_raw(s, event, "ctx_buf", record, &len, 1);
else
ev.ctx_error = tep_get_field_raw(s, event, "buf1", record, &len, 1);
if (!ev.ctx_error)
return -1;
display_raw_data(s, ev.ctx_error, ev.ctx_len);
if (tep_get_field_val(s, event, "oem_len", record, &val, 1) < 0)
return -1;
ev.oem_len = val;
trace_seq_printf(s, " Vendor Specific Err Info data len: %d\n",
ev.oem_len);
if (!legacy_patch)
ev.vsei_error = tep_get_field_raw(s, event, "oem_buf", record, &len, 1);
else
ev.vsei_error = tep_get_field_raw(s, event, "buf2", record, &len, 1);
if (!ev.vsei_error)
return -1;
#ifdef HAVE_AMP_NS_DECODE
//decode ampere specific error
decode_amp_payload0_err_regs(NULL, s,
(struct amp_payload0_type_sec *)ev.vsei_error);
#else
display_raw_data(s, ev.vsei_error, ev.oem_len);
#endif
#ifdef HAVE_CPU_FAULT_ISOLATION
if (ras_handle_cpu_error(s, record, event, &ev, now) < 0)
printf("Can't do CPU fault isolation!\n");
#endif
}
/* Insert data into the SGBD */
#ifdef HAVE_SQLITE3
ras_store_arm_record(ras, &ev);
#endif
#ifdef HAVE_ABRT_REPORT
/* Report event to ABRT */
ras_report_arm_event(ras, &ev);
#endif
return 0;
}