"VertexNamingFunction"
controls the names chosen for vertices, particularly the newly created ones. It can take
three values: None
, Automatic
,
and All
.
None
does not do anything, the vertices in the initial
condition are left as-is, and the newly created vertices use symbol names as, i.e., Module[{v}, v]
could generate:
In[] := WolframModel[{{1, 2}} -> {{1, 3}, {1, 3}, {3, 2}},
{{v1, v1}}, 2, "StatesList", "VertexNamingFunction" -> None]
Out[] = {{{v1, v1}}, {{v1, v256479}, {v1, v256479}, {v256479, v1}}, {{v1,
v256480}, {v1, v256480}, {v256480, v256479}, {v1, v256481}, {v1,
v256481}, {v256481, v256479}, {v256479, v256482}, {v256479,
v256482}, {v256482, v1}}}
All
renames all vertices as sequential integers, including the
ones in the the initial condition, and including ones manually generated
in pattern rules:
In[] := WolframModel[{{1, 2}} -> {{1, 3}, {1, 3}, {3, 2}},
{{v1, v1}}, 2, "StatesList", "VertexNamingFunction" -> All]
Out[] = {{{1, 1}}, {{1, 2}, {1, 2}, {2, 1}}, {{1, 3}, {1, 3}, {3, 2}, {1,
4}, {1, 4}, {4, 2}, {2, 5}, {2, 5}, {5, 1}}}
Automatic
only renames newly created vertices with
non-previously-used integers, and leaves the initial condition as-is. It does nothing in the case
of pattern rules.
In[] := WolframModel[{{1, 2}} -> {{1, 3}, {1, 3}, {3, 2}},
{{v1, v1}}, 2, "StatesList", "VertexNamingFunction" -> Automatic]
Out[] = {{{v1, v1}}, {{v1, 1}, {v1, 1}, {1, v1}}, {{v1, 2}, {v1, 2}, {2,
1}, {v1, 3}, {v1, 3}, {3, 1}, {1, 4}, {1, 4}, {4, v1}}}