forked from andikleen/pmu-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jkt_server_ratios.py
1726 lines (1519 loc) · 57.9 KB
/
jkt_server_ratios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: latin-1 -*-
#
# auto generated TopDown/TMA 4.3-full-perf description for Intel Xeon E5 (code named SandyBridge EP)
# Please see http://ark.intel.com for more details on these CPUs.
#
# References:
# http://bit.ly/tma-ispass14
# http://halobates.de/blog/p/262
# https://sites.google.com/site/analysismethods/yasin-pubs
# https://download.01.org/perfmon/
# https://github.com/andikleen/pmu-tools/wiki/toplev-manual
#
# Helpers
print_error = lambda msg: False
smt_enabled = False
ebs_mode = False
version = "4.3-full-perf"
base_frequency = -1.0
Memory = 0
Average_Frequency = 0.0
def handle_error(obj, msg):
print_error(msg)
obj.errcount += 1
obj.val = 0
obj.thresh = False
def handle_error_metric(obj, msg):
print_error(msg)
obj.errcount += 1
obj.val = 0
# Constants
Pipeline_Width = 4
Mem_L3_Weight = 7
Mem_STLB_Hit_Cost = 7
BAClear_Cost = 12
MS_Switches_Cost = 3
OneMillion = 1000000
OneBillion = 1000000000
# Aux. formulas
def Backend_Bound_Cycles(self, EV, level):
return (STALLS_TOTAL(self, EV, level) + EV("UOPS_DISPATCHED.THREAD:c1", level) - Few_Uops_Executed_Threshold(self, EV, level) - Frontend_RS_Empty_Cycles(self, EV, level) + EV("RESOURCE_STALLS.SB", level))
def DurationTimeInSeconds(self, EV, level):
return EV("interval-ms", 0) / 1000
def Execute_Cycles(self, EV, level):
return (EV("UOPS_DISPATCHED.CORE:c1", level) / 2) if smt_enabled else EV("UOPS_DISPATCHED.CORE:c1", level)
def Fetched_Uops(self, EV, level):
return (EV("IDQ.DSB_UOPS", level) + EV("LSD.UOPS", level) + EV("IDQ.MITE_UOPS", level) + EV("IDQ.MS_UOPS", level))
def Few_Uops_Executed_Threshold(self, EV, level):
EV("UOPS_DISPATCHED.THREAD:c3", level)
EV("UOPS_DISPATCHED.THREAD:c2", level)
return EV("UOPS_DISPATCHED.THREAD:c3", level) if (IPC(self, EV, level)> 1.8) else EV("UOPS_DISPATCHED.THREAD:c2", level)
# Floating Point computational (arithmetic) Operations Count
def FLOP_Count(self, EV, level):
return (1 *(EV("FP_COMP_OPS_EXE.SSE_SCALAR_SINGLE", level) + EV("FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE", level)) + 2 * EV("FP_COMP_OPS_EXE.SSE_PACKED_DOUBLE", level) + 4 *(EV("FP_COMP_OPS_EXE.SSE_PACKED_SINGLE", level) + EV("SIMD_FP_256.PACKED_DOUBLE", level)) + 8 * EV("SIMD_FP_256.PACKED_SINGLE", level))
# Floating Point computational (arithmetic) Operations Count
def FP_Arith_Scalar(self, EV, level):
return EV("FP_COMP_OPS_EXE.SSE_SCALAR_SINGLE", level) + EV("FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE", level)
# Floating Point computational (arithmetic) Operations Count
def FP_Arith_Vector(self, EV, level):
return EV("FP_COMP_OPS_EXE.SSE_PACKED_DOUBLE", level) + EV("FP_COMP_OPS_EXE.SSE_PACKED_SINGLE", level) + EV("SIMD_FP_256.PACKED_SINGLE", level) + EV("SIMD_FP_256.PACKED_DOUBLE", level)
def Frontend_RS_Empty_Cycles(self, EV, level):
EV("RS_EVENTS.EMPTY_CYCLES", level)
return EV("RS_EVENTS.EMPTY_CYCLES", level) if (self.Fetch_Latency.compute(EV)> 0.1) else 0
def Frontend_Latency_Cycles(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE", level)) , level )
def HighIPC(self, EV, level):
val = IPC(self, EV, level) / Pipeline_Width
return (val > 0.35)
def ITLB_Miss_Cycles(self, EV, level):
return (12 * EV("ITLB_MISSES.STLB_HIT", level) + EV("ITLB_MISSES.WALK_DURATION", level))
def Mem_L3_Hit_Fraction(self, EV, level):
return EV("MEM_LOAD_UOPS_RETIRED.LLC_HIT", level) / (EV("MEM_LOAD_UOPS_RETIRED.LLC_HIT", level) + Mem_L3_Weight * EV("MEM_LOAD_UOPS_RETIRED.LLC_MISS", level))
def Memory_Bound_Fraction(self, EV, level):
return (STALLS_MEM_ANY(self, EV, level) + EV("RESOURCE_STALLS.SB", level)) / Backend_Bound_Cycles(self, EV, level)
def Mispred_Clears_Fraction(self, EV, level):
return EV("BR_MISP_RETIRED.ALL_BRANCHES", level) / (EV("BR_MISP_RETIRED.ALL_BRANCHES", level) + EV("MACHINE_CLEARS.COUNT", level))
def ORO_DRD_Any_Cycles(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD", level)) , level )
def ORO_DRD_BW_Cycles(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD:c6", level)) , level )
def Recovery_Cycles(self, EV, level):
return (EV("INT_MISC.RECOVERY_CYCLES_ANY", level) / 2) if smt_enabled else EV("INT_MISC.RECOVERY_CYCLES", level)
def Retire_Fraction(self, EV, level):
return Retired_Slots(self, EV, level) / EV("UOPS_ISSUED.ANY", level)
# Retired slots per Logical Processor
def Retired_Slots(self, EV, level):
return EV("UOPS_RETIRED.RETIRE_SLOTS", level)
def STALLS_MEM_ANY(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("CYCLE_ACTIVITY.STALLS_L1D_PENDING", level)) , level )
def STALLS_TOTAL(self, EV, level):
return EV(lambda EV , level : min(EV("CPU_CLK_UNHALTED.THREAD", level) , EV("CYCLE_ACTIVITY.CYCLES_NO_DISPATCH", level)) , level )
# Instructions Per Cycle (per Logical Processor)
def IPC(self, EV, level):
return EV("INST_RETIRED.ANY", level) / CLKS(self, EV, level)
# Uops Per Instruction
def UPI(self, EV, level):
val = Retired_Slots(self, EV, level) / EV("INST_RETIRED.ANY", level)
return (val > 1.05)
# Cycles Per Instruction (per Logical Processor)
def CPI(self, EV, level):
return 1 / IPC(self, EV, level)
# Per-Logical Processor actual clocks when the Logical Processor is active.
def CLKS(self, EV, level):
return EV("CPU_CLK_UNHALTED.THREAD", level)
# Total issue-pipeline slots (per-Physical Core till ICL; per-Logical Processor ICL onward)
def SLOTS(self, EV, level):
return Pipeline_Width * CORE_CLKS(self, EV, level)
# The ratio of Executed- by Issued-Uops. Ratio > 1 suggests high rate of uop micro-fusions. Ratio < 1 suggest high rate of "execute" at rename stage.
def Execute_per_Issue(self, EV, level):
return EV("UOPS_DISPATCHED.THREAD", level) / EV("UOPS_ISSUED.ANY", level)
# Instructions Per Cycle across hyper-threads (per physical core)
def CoreIPC(self, EV, level):
return EV("INST_RETIRED.ANY", level) / CORE_CLKS(self, EV, level)
# Floating Point Operations Per Cycle
def FLOPc(self, EV, level):
return FLOP_Count(self, EV, level) / CORE_CLKS(self, EV, level)
# Instruction-Level-Parallelism (average number of uops executed when there is at least 1 uop executed)
def ILP(self, EV, level):
return EV("UOPS_DISPATCHED.THREAD", level) / Execute_Cycles(self, EV, level)
# Core actual clocks when any Logical Processor is active on the Physical Core
def CORE_CLKS(self, EV, level):
return ((EV("CPU_CLK_UNHALTED.THREAD", level) / 2) * (1 + EV("CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE", level) / EV("CPU_CLK_UNHALTED.REF_XCLK", level))) if ebs_mode else(EV("CPU_CLK_UNHALTED.THREAD_ANY", level) / 2) if smt_enabled else CLKS(self, EV, level)
# Total number of retired Instructions
def Instructions(self, EV, level):
return EV("INST_RETIRED.ANY", level)
# Fraction of Uops delivered by the DSB (aka Decoded ICache; or Uop Cache)
def DSB_Coverage(self, EV, level):
val = EV("IDQ.DSB_UOPS", level) / Fetched_Uops(self, EV, level)
return (val < 0.7) and HighIPC(self, EV, 1)
# Average CPU Utilization
def CPU_Utilization(self, EV, level):
return EV("CPU_CLK_UNHALTED.REF_TSC", level) / EV("msr/tsc/", 0)
# Measured Average Frequency for unhalted processors [GHz]
def Average_Frequency(self, EV, level):
return Turbo_Utilization(self, EV, level) * EV("msr/tsc/", 0) / OneBillion / Time(self, EV, level)
# Giga Floating Point Operations Per Second
def GFLOPs(self, EV, level):
return (FLOP_Count(self, EV, level) / OneBillion) / Time(self, EV, level)
# Average Frequency Utilization relative nominal frequency
def Turbo_Utilization(self, EV, level):
return CLKS(self, EV, level) / EV("CPU_CLK_UNHALTED.REF_TSC", level)
# Fraction of cycles where both hardware Logical Processors were active
def SMT_2T_Utilization(self, EV, level):
return 1 - EV("CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE", level) / (EV("CPU_CLK_UNHALTED.REF_XCLK_ANY", level) / 2) if smt_enabled else 0
# Fraction of cycles spent in the Operating System (OS) Kernel mode
def Kernel_Utilization(self, EV, level):
val = EV("CPU_CLK_UNHALTED.THREAD_P:SUP", level) / EV("CPU_CLK_UNHALTED.THREAD", level)
return (val > 0.05)
# Cycles Per Instruction for the Operating System (OS) Kernel mode
def Kernel_CPI(self, EV, level):
return EV("CPU_CLK_UNHALTED.THREAD_P:SUP", level) / EV("INST_RETIRED.ANY_P:SUP", level)
# Average external Memory Bandwidth Use for reads and writes [GB / sec]
def DRAM_BW_Use(self, EV, level):
return (64 *(EV("UNC_M_CAS_COUNT.RD", level) + EV("UNC_M_CAS_COUNT.WR", level)) / OneBillion) / Time(self, EV, level)
# Average latency of data read request to external memory (in nanoseconds). Accounts for demand loads and L1/L2 prefetches
def MEM_Read_Latency(self, EV, level):
return OneBillion *(EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:Match=0x182", level) / EV("UNC_C_TOR_INSERTS.MISS_OPCODE:Match=0x182", level)) / (Socket_CLKS(self, EV, level) / Time(self, EV, level))
# Average number of parallel data read requests to external memory. Accounts for demand loads and L1/L2 prefetches
def MEM_Parallel_Reads(self, EV, level):
return EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:Match=0x182", level) / EV("UNC_C_TOR_OCCUPANCY.MISS_OPCODE:Match=0x182:c1", level)
# Run duration time in seconds
def Time(self, EV, level):
val = EV("interval-s", 0)
return (val < 1)
# Socket actual clocks when any core is active on that socket
def Socket_CLKS(self, EV, level):
return EV("UNC_C_CLOCKTICKS:one_unit", level)
# Instructions per Far Branch ( Far Branches apply upon transition from application to operating system, handling interrupts, exceptions) [lower number means higher occurrence rate]
def IpFarBranch(self, EV, level):
val = EV("INST_RETIRED.ANY", level) / EV("BR_INST_RETIRED.FAR_BRANCH:USER", level)
return (val < 1000000)
# Event groups
class Frontend_Bound:
name = "Frontend_Bound"
domain = "Slots"
area = "FE"
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['TmaL1', 'PGO']
def compute(self, EV):
try:
self.val = EV("IDQ_UOPS_NOT_DELIVERED.CORE", 1) / SLOTS(self, EV, 1)
self.thresh = (self.val > 0.15)
except ZeroDivisionError:
handle_error(self, "Frontend_Bound zero division")
return self.val
desc = """
This category represents fraction of slots where the
processor's Frontend undersupplies its Backend. Frontend
denotes the first part of the processor core responsible to
fetch operations that are executed later on by the Backend
part. Within the Frontend; a branch predictor predicts the
next address to fetch; cache-lines are fetched from the
memory subsystem; parsed into instructions; and lastly
decoded into micro-operations (uops). Ideally the Frontend
can issue Machine_Width uops every cycle to the Backend.
Frontend Bound denotes unutilized issue-slots when there is
no Backend stall; i.e. bubbles where Frontend delivered no
uops while Backend could have accepted them. For example;
stalls due to instruction-cache misses would be categorized
under Frontend Bound."""
class Fetch_Latency:
name = "Fetch_Latency"
domain = "Slots"
area = "FE"
level = 2
htoff = False
sample = ['RS_EVENTS.EMPTY_END']
errcount = 0
sibling = None
server = False
metricgroup = ['Frontend', 'TmaL2']
def compute(self, EV):
try:
self.val = Pipeline_Width * Frontend_Latency_Cycles(self, EV, 2) / SLOTS(self, EV, 2)
self.thresh = (self.val > 0.10) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Fetch_Latency zero division")
return self.val
desc = """
This metric represents fraction of slots the CPU was stalled
due to Frontend latency issues. For example; instruction-
cache misses; iTLB misses or fetch stalls after a branch
misprediction are categorized under Frontend Latency. In
such cases; the Frontend eventually delivers no uops for
some period."""
class ITLB_Misses:
name = "ITLB_Misses"
domain = "Clocks"
area = "FE"
level = 3
htoff = False
sample = ['ITLB_MISSES.WALK_COMPLETED']
errcount = 0
sibling = None
server = False
metricgroup = ['BigFoot', 'FetchLat', 'MemoryTLB']
def compute(self, EV):
try:
self.val = ITLB_Miss_Cycles(self, EV, 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "ITLB_Misses zero division")
return self.val
desc = """
This metric represents fraction of cycles the CPU was
stalled due to Instruction TLB (ITLB) misses."""
class Branch_Resteers:
name = "Branch_Resteers"
domain = "Clocks_Estimated"
area = "FE"
level = 3
htoff = False
sample = ['BR_MISP_RETIRED.ALL_BRANCHES:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['FetchLat']
def compute(self, EV):
try:
self.val = BAClear_Cost *(EV("BR_MISP_RETIRED.ALL_BRANCHES", 3) + EV("MACHINE_CLEARS.COUNT", 3) + EV("BACLEARS.ANY", 3)) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Branch_Resteers zero division")
return self.val
desc = """
This metric represents fraction of cycles the CPU was
stalled due to Branch Resteers. Branch Resteers estimates
the Frontend delay in fetching operations from corrected
path; following all sorts of miss-predicted branches. For
example; branchy code with lots of miss-predictions might
get categorized under Branch Resteers. Note the value of
this node may overlap with its siblings."""
class DSB_Switches:
name = "DSB_Switches"
domain = "Clocks"
area = "FE"
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['DSBmiss', 'FetchLat']
def compute(self, EV):
try:
self.val = EV("DSB2MITE_SWITCHES.PENALTY_CYCLES", 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "DSB_Switches zero division")
return self.val
desc = """
This metric represents fraction of cycles the CPU was
stalled due to switches from DSB to MITE pipelines. The DSB
(decoded i-cache) is a Uop Cache where the front-end
directly delivers Uops (micro operations) avoiding heavy x86
decoding. The DSB pipeline has shorter latency and delivered
higher bandwidth than the MITE (legacy instruction decode
pipeline). Switching between the two pipelines can cause
penalties hence this metric measures the exposed penalty."""
class LCP:
name = "LCP"
domain = "Clocks"
area = "FE"
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['FetchLat']
def compute(self, EV):
try:
self.val = EV("ILD_STALL.LCP", 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "LCP zero division")
return self.val
desc = """
This metric represents fraction of cycles CPU was stalled
due to Length Changing Prefixes (LCPs). Using proper
compiler flags or Intel Compiler by default will certainly
avoid this."""
class MS_Switches:
name = "MS_Switches"
domain = "Clocks"
area = "FE"
level = 3
htoff = False
sample = ['IDQ.MS_SWITCHES']
errcount = 0
sibling = None
server = False
metricgroup = ['FetchLat', 'MicroSeq']
def compute(self, EV):
try:
self.val = MS_Switches_Cost * EV("IDQ.MS_SWITCHES", 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "MS_Switches zero division")
return self.val
desc = """
This metric estimates the fraction of cycles when the CPU
was stalled due to switches of uop delivery to the Microcode
Sequencer (MS). Commonly used instructions are optimized for
delivery by the DSB (decoded i-cache) or MITE (legacy
instruction decode) pipelines. Certain operations cannot be
handled natively by the execution pipeline; and must be
performed by microcode (small programs injected into the
execution stream). Switching to the MS too often can
negatively impact performance. The MS is designated to
deliver long uop flows required by CISC instructions like
CPUID; or uncommon conditions like Floating Point Assists
when dealing with Denormals."""
class Fetch_Bandwidth:
name = "Fetch_Bandwidth"
domain = "Slots"
area = "FE"
level = 2
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['FetchBW', 'Frontend', 'TmaL2']
def compute(self, EV):
try:
self.val = self.Frontend_Bound.compute(EV) - self.Fetch_Latency.compute(EV)
self.thresh = (self.val > 0.1) and self.parent.thresh and HighIPC(self, EV, 2)
except ZeroDivisionError:
handle_error(self, "Fetch_Bandwidth zero division")
return self.val
desc = """
This metric represents fraction of slots the CPU was stalled
due to Frontend bandwidth issues. For example;
inefficiencies at the instruction decoders; or restrictions
for caching in the DSB (decoded uops cache) are categorized
under Fetch Bandwidth. In such cases; the Frontend typically
delivers suboptimal amount of uops to the Backend."""
class Bad_Speculation:
name = "Bad_Speculation"
domain = "Slots"
area = "BAD"
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['TmaL1']
def compute(self, EV):
try:
self.val = (EV("UOPS_ISSUED.ANY", 1) - Retired_Slots(self, EV, 1) + Pipeline_Width * Recovery_Cycles(self, EV, 1)) / SLOTS(self, EV, 1)
self.thresh = (self.val > 0.15)
except ZeroDivisionError:
handle_error(self, "Bad_Speculation zero division")
return self.val
desc = """
This category represents fraction of slots wasted due to
incorrect speculations. This include slots used to issue
uops that do not eventually get retired and slots for which
the issue-pipeline was blocked due to recovery from earlier
incorrect speculation. For example; wasted work due to miss-
predicted branches are categorized under Bad Speculation
category. Incorrect data speculation followed by Memory
Ordering Nukes is another example."""
class Branch_Mispredicts:
name = "Branch_Mispredicts"
domain = "Slots"
area = "BAD"
level = 2
htoff = False
sample = ['BR_MISP_RETIRED.ALL_BRANCHES:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['BadSpec', 'BrMispredicts', 'TmaL2']
def compute(self, EV):
try:
self.val = Mispred_Clears_Fraction(self, EV, 2) * self.Bad_Speculation.compute(EV)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Branch_Mispredicts zero division")
return self.val
desc = """
This metric represents fraction of slots the CPU has wasted
due to Branch Misprediction. These slots are either wasted
by uops fetched from an incorrectly speculated program path;
or stalls when the out-of-order part of the machine needs to
recover its state from a speculative path."""
class Machine_Clears:
name = "Machine_Clears"
domain = "Slots"
area = "BAD"
level = 2
htoff = False
sample = ['MACHINE_CLEARS.COUNT']
errcount = 0
sibling = None
server = False
metricgroup = ['BadSpec', 'MachineClears', 'TmaL2']
def compute(self, EV):
try:
self.val = self.Bad_Speculation.compute(EV) - self.Branch_Mispredicts.compute(EV)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Machine_Clears zero division")
return self.val
desc = """
This metric represents fraction of slots the CPU has wasted
due to Machine Clears. These slots are either wasted by
uops fetched prior to the clear; or stalls the out-of-order
portion of the machine needs to recover its state after the
clear. For example; this can happen due to memory ordering
Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code
(SMC) nukes."""
class Backend_Bound:
name = "Backend_Bound"
domain = "Slots"
area = "BE"
level = 1
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['TmaL1']
def compute(self, EV):
try:
self.val = 1 -(self.Frontend_Bound.compute(EV) + self.Bad_Speculation.compute(EV) + self.Retiring.compute(EV))
self.thresh = (self.val > 0.2)
except ZeroDivisionError:
handle_error(self, "Backend_Bound zero division")
return self.val
desc = """
This category represents fraction of slots where no uops are
being delivered due to a lack of required resources for
accepting new uops in the Backend. Backend is the portion of
the processor core where the out-of-order scheduler
dispatches ready uops into their respective execution units;
and once completed these uops get retired according to
program order. For example; stalls due to data-cache misses
or stalls due to the divider unit being overloaded are both
categorized under Backend Bound. Backend Bound is further
divided into two main categories: Memory Bound and Core
Bound."""
class Memory_Bound:
name = "Memory_Bound"
domain = "Slots"
area = "BE/Mem"
level = 2
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['Backend', 'TmaL2']
def compute(self, EV):
try:
self.val = Memory_Bound_Fraction(self, EV, 2) * self.Backend_Bound.compute(EV)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Memory_Bound zero division")
return self.val
desc = """
This metric represents fraction of slots the Memory
subsystem within the Backend was a bottleneck. Memory Bound
estimates fraction of slots where pipeline is likely stalled
due to demand load or store instructions. This accounts
mainly for (1) non-completed in-flight memory demand loads
which coincides with execution units starvation; in addition
to (2) cases where stores could impose backpressure on the
pipeline when many of them get buffered at the same time
(less common out of the two)."""
class DTLB_Load:
name = "DTLB_Load"
domain = "Clocks_Estimated"
area = "BE/Mem"
level = 4
htoff = False
sample = ['MEM_UOPS_RETIRED.STLB_MISS_LOADS:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['MemoryTLB']
def compute(self, EV):
try:
self.val = (Mem_STLB_Hit_Cost * EV("DTLB_LOAD_MISSES.STLB_HIT", 4) + EV("DTLB_LOAD_MISSES.WALK_DURATION", 4)) / CLKS(self, EV, 4)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "DTLB_Load zero division")
return self.val
desc = """
This metric roughly estimates the fraction of cycles where
the Data TLB (DTLB) was missed by load accesses. TLBs
(Translation Look-aside Buffers) are processor caches for
recently used entries out of the Page Tables that are used
to map virtual- to physical-addresses by the operating
system. This metric approximates the potential delay of
demand loads missing the first-level data TLB (assuming
worst case scenario with back to back misses to different
pages). This includes hitting in the second-level TLB (STLB)
as well as performing a hardware page walk on an STLB miss."""
class L3_Bound:
name = "L3_Bound"
domain = "Stalls"
area = "BE/Mem"
level = 3
htoff = False
sample = ['MEM_LOAD_UOPS_RETIRED.LLC_HIT:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['CacheMisses', 'MemoryBound', 'TmaL3mem']
def compute(self, EV):
try:
self.val = Mem_L3_Hit_Fraction(self, EV, 3) * EV("CYCLE_ACTIVITY.STALLS_L2_PENDING", 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.05) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "L3_Bound zero division")
return self.val
desc = """
This metric estimates how often the CPU was stalled due to
loads accesses to L3 cache or contended with a sibling Core.
Avoiding cache misses (i.e. L2 misses/L3 hits) can improve
the latency and increase performance."""
class DRAM_Bound:
name = "DRAM_Bound"
domain = "Stalls"
area = "BE/Mem"
level = 3
htoff = False
sample = ['MEM_LOAD_UOPS_RETIRED.LLC_MISS:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['MemoryBound', 'TmaL3mem']
def compute(self, EV):
try:
self.val = (1 - Mem_L3_Hit_Fraction(self, EV, 3)) * EV("CYCLE_ACTIVITY.STALLS_L2_PENDING", 3) / CLKS(self, EV, 3)
self.val = max(self.val, 1)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "DRAM_Bound zero division")
return self.val
desc = """
This metric estimates how often the CPU was stalled on
accesses to external memory (DRAM) by loads. Better caching
can improve the latency and increase performance."""
class MEM_Bandwidth:
name = "MEM_Bandwidth"
domain = "Clocks"
area = "BE/Mem"
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['MemoryBW', 'Offcore']
def compute(self, EV):
try:
self.val = ORO_DRD_BW_Cycles(self, EV, 4) / CLKS(self, EV, 4)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "MEM_Bandwidth zero division")
return self.val
desc = """
This metric estimates fraction of cycles where the core's
performance was likely hurt due to approaching bandwidth
limits of external memory (DRAM). The underlying heuristic
assumes that a similar off-core traffic is generated by all
IA cores. This metric does not aggregate non-data-read
requests by this logical processor; requests from other IA
Logical Processors/Physical Cores/sockets; or other non-IA
devices like GPU; hence the maximum external memory
bandwidth limits may or may not be approached when this
metric is flagged (see Uncore counters for that)."""
class MEM_Latency:
name = "MEM_Latency"
domain = "Clocks"
area = "BE/Mem"
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['MemoryLat', 'Offcore']
def compute(self, EV):
try:
self.val = ORO_DRD_Any_Cycles(self, EV, 4) / CLKS(self, EV, 4) - self.MEM_Bandwidth.compute(EV)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "MEM_Latency zero division")
return self.val
desc = """
This metric estimates fraction of cycles where the
performance was likely hurt due to latency from external
memory (DRAM). This metric does not aggregate requests from
other Logical Processors/Physical Cores/sockets (see Uncore
counters for that)."""
class Store_Bound:
name = "Store_Bound"
domain = "Stalls"
area = "BE/Mem"
level = 3
htoff = False
sample = ['MEM_UOPS_RETIRED.ALL_STORES:pp']
errcount = 0
sibling = None
server = False
metricgroup = ['MemoryBound', 'TmaL3mem']
def compute(self, EV):
try:
self.val = EV("RESOURCE_STALLS.SB", 3) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Store_Bound zero division")
return self.val
desc = """
This metric estimates how often CPU was stalled due to RFO
store memory accesses; RFO store issue a read-for-ownership
request before the write. Even though store accesses do not
typically stall out-of-order CPUs; there are few cases where
stores can lead to actual stalls. This metric will be
flagged should RFO stores be a bottleneck."""
class Core_Bound:
name = "Core_Bound"
domain = "Slots"
area = "BE/Core"
level = 2
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['Backend', 'TmaL2', 'Compute']
def compute(self, EV):
try:
self.val = self.Backend_Bound.compute(EV) - self.Memory_Bound.compute(EV)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Core_Bound zero division")
return self.val
desc = """
This metric represents fraction of slots where Core non-
memory issues were of a bottleneck. Shortage in hardware
compute resources; or dependencies in software's
instructions are both categorized under Core Bound. Hence it
may indicate the machine ran out of an out-of-order
resource; certain execution units are overloaded or
dependencies in program's data- or instruction-flow are
limiting the performance (e.g. FP-chained long-latency
arithmetic operations)."""
class Divider:
name = "Divider"
domain = "Clocks"
area = "BE/Core"
level = 3
htoff = False
sample = ['ARITH.FPU_DIV_ACTIVE']
errcount = 0
sibling = None
server = False
metricgroup = []
def compute(self, EV):
try:
self.val = EV("ARITH.FPU_DIV_ACTIVE", 3) / CORE_CLKS(self, EV, 3)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Divider zero division")
return self.val
desc = """
This metric represents fraction of cycles where the Divider
unit was active. Divide and square root instructions are
performed by the Divider unit and can take considerably
longer latency than integer or Floating Point addition;
subtraction; or multiplication."""
class Ports_Utilization:
name = "Ports_Utilization"
domain = "Clocks"
area = "BE/Core"
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['PortsUtil']
def compute(self, EV):
try:
self.val = (Backend_Bound_Cycles(self, EV, 3) - EV("RESOURCE_STALLS.SB", 3) - STALLS_MEM_ANY(self, EV, 3)) / CLKS(self, EV, 3)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "Ports_Utilization zero division")
return self.val
desc = """
This metric estimates fraction of cycles the CPU performance
was potentially limited due to Core computation issues (non
divider-related). Two distinct categories can be attributed
into this metric: (1) heavy data-dependency among contiguous
instructions would manifest in this metric - such cases are
often referred to as low Instruction Level Parallelism
(ILP). (2) Contention on some hardware execution unit other
than Divider. For example; when there are too many multiply
operations."""
class Retiring:
name = "Retiring"
domain = "Slots"
area = "RET"
level = 1
htoff = False
sample = ['UOPS_RETIRED.RETIRE_SLOTS']
errcount = 0
sibling = None
server = False
metricgroup = ['TmaL1']
def compute(self, EV):
try:
self.val = Retired_Slots(self, EV, 1) / SLOTS(self, EV, 1)
self.thresh = (self.val > 0.7) or self.Heavy_Operations.thresh
except ZeroDivisionError:
handle_error(self, "Retiring zero division")
return self.val
desc = """
This category represents fraction of slots utilized by
useful work i.e. issued uops that eventually get retired.
Ideally; all pipeline slots would be attributed to the
Retiring category. Retiring of 100% would indicate the
maximum Pipeline_Width throughput was achieved. Maximizing
Retiring typically increases the Instructions-per-cycle (see
IPC metric). Note that a high Retiring value does not
necessary mean there is no room for more performance. For
example; Heavy-operations or Microcode Assists are
categorized under Retiring. They often indicate suboptimal
performance and can often be optimized or avoided."""
class Light_Operations:
name = "Light_Operations"
domain = "Slots"
area = "RET"
level = 2
htoff = False
sample = ['INST_RETIRED.PREC_DIST']
errcount = 0
sibling = None
server = False
metricgroup = ['Retire', 'TmaL2']
def compute(self, EV):
try:
self.val = self.Retiring.compute(EV) - self.Heavy_Operations.compute(EV)
self.thresh = (self.val > 0.6)
except ZeroDivisionError:
handle_error(self, "Light_Operations zero division")
return self.val
desc = """
This metric represents fraction of slots where the CPU was
retiring light-weight operations -- instructions that
require no more than one uop (micro-operation). This
correlates with total number of instructions used by the
program. A uops-per-instruction (see UPI metric) ratio of 1
or less should be expected for decently optimized software
running on Intel Core/Xeon products. While this often
indicates efficient X86 instructions were executed; high
value does not necessarily mean better performance cannot be
achieved."""
class FP_Arith:
name = "FP_Arith"
domain = "Uops"
area = "RET"
level = 3
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['HPC']
def compute(self, EV):
try:
self.val = self.X87_Use.compute(EV) + self.FP_Scalar.compute(EV) + self.FP_Vector.compute(EV)
self.thresh = (self.val > 0.2) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "FP_Arith zero division")
return self.val
desc = """
This metric represents overall arithmetic floating-point
(FP) operations fraction the CPU has executed (retired on
AVX stack). Note this metric's value may exceed its parent
due to use of \"Uops\" CountDomain and FMA double-counting."""
class X87_Use:
name = "X87_Use"
domain = "Uops"
area = "RET"
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['Compute']
def compute(self, EV):
try:
self.val = Retired_Slots(self, EV, 4) * EV("FP_COMP_OPS_EXE.X87", 4) / EV("UOPS_DISPATCHED.THREAD", 4)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "X87_Use zero division")
return self.val
desc = """
This metric serves as an approximation of legacy x87 usage.
It accounts for instructions beyond X87 FP arithmetic
operations; hence may be used as a thermometer to avoid X87
high usage and preferably upgrade to modern ISA. Tip:
consider compiler flags to generate newer AVX (or SSE)
instruction sets; which typically perform better and feature
vectors."""
class FP_Scalar:
name = "FP_Scalar"
domain = "Uops"
area = "RET"
level = 4
htoff = False
sample = []
errcount = 0
sibling = None
server = False
metricgroup = ['Compute', 'Flops']
def compute(self, EV):
try:
self.val = FP_Arith_Scalar(self, EV, 4) / EV("UOPS_DISPATCHED.THREAD", 4)
self.thresh = (self.val > 0.1) and self.parent.thresh
except ZeroDivisionError:
handle_error(self, "FP_Scalar zero division")
return self.val
desc = """
This metric approximates arithmetic floating-point (FP)
scalar uops fraction the CPU has executed (retired). May
overcount due to FMA double counting."""
class FP_Vector:
name = "FP_Vector"
domain = "Uops"
area = "RET"
level = 4