forked from KeckCAVES/LidarViewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LidarOctreeCreator.cpp
862 lines (759 loc) · 28.3 KB
/
LidarOctreeCreator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/***********************************************************************
LidarOctreeCreator - Class to create LiDAR octrees from point clouds
using an out-of-core algorithm.
Copyright (c) 2007-2013 Oliver Kreylos
This file is part of the LiDAR processing and analysis package.
The LiDAR processing and analysis package is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The LiDAR processing and analysis package is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the LiDAR processing and analysis package; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
***********************************************************************/
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <dirent.h>
#include <string>
#include <vector>
#include <iostream>
#include <iomanip>
#include <Misc/ThrowStdErr.h>
#include <Misc/PriorityHeap.h>
#include <Threads/Thread.h>
#include <Math/Math.h>
#include <Math/Constants.h>
#include <Geometry/ArrayKdTree.h>
#include "TempOctree.h"
#include "SplitPoints.h"
#include "LidarOctreeCreator.h"
namespace {
/************************************************************
Helper class to find nearest neighbors of points in kd-trees:
************************************************************/
class NearestNeighborFinder // Functor class to find nearest neighbors in a kd-tree
{
/* Elements: */
private:
const LidarPoint* point; // The point whose nearest neighbor we're looking for
const LidarPoint* nnc; // The current nearest neighbor candidate
Scalar nncDist2; // Its squared distance from the source point
/* Constructors and destructors: */
public:
NearestNeighborFinder(const LidarPoint& sPoint) // Must be called with an actual element of the kd-tree's point array
:point(&sPoint),
nnc(0),nncDist2(Math::Constants<Scalar>::max)
{
};
/* Methods: */
const LidarPoint& getQueryPosition(void) const
{
return *point;
};
bool operator()(const LidarPoint& node,int splitDimension)
{
if(&node!=point)
{
/* Check if this point is closer than the previous candidate: */
Scalar dist2=Geometry::sqrDist(*point,node);
if(nncDist2>dist2)
{
nnc=&node;
nncDist2=dist2;
}
}
/* Stop traversing the tree if the splitting plane is farther away than the current nearest neighbor: */
return Math::sqr(node[splitDimension]-(*point)[splitDimension])<=nncDist2;
};
const LidarPoint* getNeighbor(void) const // Returns the nearest neighbor
{
return nnc;
};
Scalar getDistance(void) const // Returns the distance to the closest neighbor
{
return Math::sqrt(nncDist2);
};
};
class PointRemover // Functor class to remove points from a kd-tree
{
/* Elements: */
private:
Point point; // Center point of removal sphere
Scalar radius,radius2; // Radius and squared radius of removal sphere
const LidarPoint* nodeBase; // Base pointer to calculate node indices
bool* removeFlags; // Array of point removal flags
unsigned int numRemovedPoints; // Number of (newly) removed points
/* Constructors and destructors: */
public:
PointRemover(const Point& sPoint,Scalar sRadius,const LidarPoint* sNodeBase,bool* sRemoveFlags)
:point(sPoint),
radius(sRadius),radius2(Math::sqr(radius)),
nodeBase(sNodeBase),
removeFlags(sRemoveFlags),
numRemovedPoints(0)
{
};
/* Methods: */
const Point& getQueryPosition(void) const
{
return point;
};
bool operator()(const LidarPoint& node,int splitDimension)
{
if(Geometry::sqrDist(node,point)<=radius2)
{
/* Mark the point for removal: */
unsigned int nodeIndex=&node-nodeBase;
if(!removeFlags[nodeIndex])
++numRemovedPoints;
removeFlags[nodeIndex]=true;
}
/* Stop traversing the tree if the splitting plane is farther away than the removal radius: */
return Math::abs(node[splitDimension]-point[splitDimension])<radius;
};
unsigned int getNumRemovedPoints(void) const
{
return numRemovedPoints;
};
};
/************************************************************************
Helper structure to subsample point sets by collapsing nearest neighbors:
************************************************************************/
struct NeighborPair
{
/* Elements: */
public:
unsigned int point;
unsigned int neighbor;
Scalar distance;
/* Methods: */
static bool lessEqual(const NeighborPair& n1,const NeighborPair& n2) // Comparison function needed by the priority heap
{
return n1.distance<=n2.distance;
};
};
}
/***********************************
Methods of class PointOctreeCreator:
***********************************/
void LidarOctreeCreator::writeNodePoints(LidarOctreeCreator::Node& node)
{
/* Get the temporary point file responsible for the node's level: */
TempPointFile* tpf=0;
{
Threads::Mutex::Lock tempPointFilesLock(tempPointFilesMutex);
/* Check if the current level is bigger than the previous maximum level in the tree: */
if(maxLevel<node.level)
{
/* Add new temporary point file structures to the vector: */
for(unsigned int i=maxLevel+1;i<=node.level;++i)
tempPointFiles.push_back(new TempPointFile);
/* Remember the maximum tree level: */
maxLevel=node.level;
}
/* Check if the temporary point file for this level needs to be created: */
tpf=tempPointFiles[node.level];
if(tpf->file==0)
{
/* Create a temporary point file name: */
char fnt[1024];
strcpy(fnt,tempPointFileNameTemplate.c_str());
int pointFileFd=mkstemp(fnt);
if(pointFileFd<0)
Misc::throwStdErr("LidarOctreeCreator::writeNodePoints: Unable to open temporary point file %s",fnt);
/* Create the temporary point file: */
tpf->file=new TempFile(pointFileFd,TempFile::ReadWrite);
tpf->fileName=fnt;
/* Immediately unlink the temporary file, it will stay alive until the file handle is closed: */
unlink(tpf->fileName.c_str());
}
}
/* Sort the node's points into kd-tree order in-place: */
Geometry::ArrayKdTree<LidarPoint> pointTree;
pointTree.donatePoints(node.numPoints,node.points);
LidarPoint* nodePoints=pointTree.detachPoints();
/* Write the node's points to the appropriate point file: */
{
Threads::Mutex::Lock tempPointFileLock(tpf->mutex);
node.pointsOffset=tpf->file->getWritePos();
tpf->file->write(nodePoints,node.numPoints);
}
/* Delete the node's points: */
if(node.pointsPrivate)
{
node.pointsPrivate=false;
delete[] nodePoints;
}
}
void LidarOctreeCreator::subsample(LidarOctreeCreator::Node& node)
{
typedef Geometry::ArrayKdTree<LidarPoint> KdTree;
/* Count the total number of points in all children's point sets: */
unsigned int totalNumPoints=0;
for(int childIndex=0;childIndex<8;++childIndex)
totalNumPoints+=node.children[childIndex].numPoints;
/* Create a kd-tree containing all the children's points: */
KdTree* pointTree=new KdTree(totalNumPoints);
LidarPoint* tpPtr=pointTree->accessPoints();
Scalar largestCollapsedDetail=Scalar(0);
for(int childIndex=0;childIndex<8;++childIndex)
{
Node& child=node.children[childIndex];
/* Copy the child's point set: */
if(largestCollapsedDetail<child.detailSize)
largestCollapsedDetail=child.detailSize;
for(unsigned int i=0;i<child.numPoints;++i,++tpPtr)
*tpPtr=child.points[i];
/* Write the child node to file: */
writeNodePoints(child);
}
pointTree->releasePoints();
bool* removeFlags=0;
unsigned int numPointsLeft;
while(true)
{
/* Create a priority queue of nearest-neighbor pairs: */
Misc::PriorityHeap<NeighborPair,NeighborPair> neighborPairs(totalNumPoints);
/* Find each point's closest neighbor: */
const LidarPoint* treePoints=pointTree->accessPoints();
for(unsigned int i=0;i<totalNumPoints;++i)
{
NearestNeighborFinder nnf(pointTree->getNode(i));
pointTree->traverseTreeDirected(nnf);
NeighborPair np;
np.point=i;
np.neighbor=nnf.getNeighbor()-treePoints;
np.distance=nnf.getDistance();
neighborPairs.insert(np);
}
/* Remove points from the current set: */
removeFlags=new bool[totalNumPoints];
for(unsigned int i=0;i<totalNumPoints;++i)
removeFlags[i]=false;
numPointsLeft=totalNumPoints;
while(numPointsLeft>maxNumPointsPerNode&&!neighborPairs.isEmpty())
{
/* Get the pair of closest neighbors: */
const NeighborPair& cnp=neighborPairs.getSmallest();
/* Only remove around points that are not already marked for removal themselves: */
if(!removeFlags[cnp.point])
{
/* Mark the point temporarily so it won't be counted by the removal process: */
removeFlags[cnp.point]=true;
/* Remove points in the point's neighborhood: */
Scalar collapseSize=cnp.distance*Scalar(1.9);
if(largestCollapsedDetail<collapseSize)
largestCollapsedDetail=collapseSize;
PointRemover pr(pointTree->getNode(cnp.point),collapseSize,treePoints,removeFlags);
pointTree->traverseTreeDirected(pr);
/* Reset the point's removal flag and update the number of remaining points: */
removeFlags[cnp.point]=false;
numPointsLeft-=pr.getNumRemovedPoints();
}
neighborPairs.removeSmallest();
}
unsigned int actualNumPointsLeft=0;
for(unsigned int i=0;i<totalNumPoints;++i)
if(!removeFlags[i])
++actualNumPointsLeft;
if(numPointsLeft!=actualNumPointsLeft)
std::cerr<<"Mismatch in number of points left after subsampling; "<<actualNumPointsLeft<<" vs "<<numPointsLeft<<std::endl;
/* Stop subsampling if number of points is small enough (should almost always be the case): */
if(numPointsLeft<=maxNumPointsPerNode)
break;
/* Otherwise copy the leftover points into another kd-tree and start over: */
KdTree* newPointTree=new KdTree(numPointsLeft);
LidarPoint* tpPtr=newPointTree->accessPoints();
for(unsigned int i=0;i<totalNumPoints;++i)
{
if(!removeFlags[i])
{
*tpPtr=pointTree->getNode(i);
++tpPtr;
}
}
newPointTree->releasePoints();
delete pointTree;
pointTree=newPointTree;
delete[] removeFlags;
totalNumPoints=numPointsLeft;
}
/* Store the leftover points in the node's point array: */
node.detailSize=largestCollapsedDetail;
if(node.points!=0&&node.numPoints<numPointsLeft)
std::cerr<<"Bad subsampling result"<<std::endl;
node.numPoints=numPointsLeft;
if(node.points==0)
{
node.pointsPrivate=true;
node.points=new LidarPoint[numPointsLeft];
}
LidarPoint* npPtr=node.points;
for(unsigned int i=0;i<totalNumPoints;++i)
if(!removeFlags[i])
{
*npPtr=pointTree->getNode(i);
++npPtr;
}
delete pointTree;
delete[] removeFlags;
if(maxNumPointsPerInteriorNode<node.numPoints)
maxNumPointsPerInteriorNode=node.numPoints;
}
void* LidarOctreeCreator::subsampleThreadMethod(void)
{
Node* node=0;
while(true)
{
if(node==0)
{
/* Get the next request from the subsampling queue: */
node=subsampleQueue.pop();
/* Check for queue-end sentinel value: */
if(node==0)
break;
}
/* Subsample the requested node: */
subsample(*node);
/* Update the parent node's ready counter: */
if(node->parent!=0&&node->parent->numChildrenDone.preAdd(1)==8)
{
/* Subsample the parent node right away: */
node=node->parent;
}
else
{
/* Grab another subsample request from the subsample queue: */
node=0;
}
}
return 0;
}
void LidarOctreeCreator::createSubTree(LidarOctreeCreator::Node& node,const Cube& nodeDomain)
{
/* Get an upper bound on the number of points contained in this node's domain: */
size_t numPointsBound=0;
for(TempOctreeList::const_iterator toIt=tempOctrees.begin();toIt!=tempOctrees.end();++toIt)
numPointsBound+=(*toIt)->boundNumPointsInCube(nodeDomain);
/* Compare the estimated number of points against the allowed maximum: */
if(numPointsBound>maxNumCachablePoints)
{
/* There are too many points in this domain; split the node and delegate to its children: */
node.children=new Node[8];
totalNumNodes+=8;
for(int childIndex=0;childIndex<8;++childIndex)
{
Node& child=node.children[childIndex];
child.parent=&node;
child.level=node.level+1;
createSubTree(child,Cube(nodeDomain,childIndex));
}
}
else if(numPointsBound>0)
{
/* Get the actual points contained in this node's domain: */
node.pointsPrivate=true;
node.points=new LidarPoint[numPointsBound];
LidarPoint* pPtr=node.points;
for(TempOctreeList::const_iterator toIt=tempOctrees.begin();toIt!=tempOctrees.end();++toIt)
pPtr=(*toIt)->getPointsInCube(nodeDomain,pPtr);
node.numPoints=(unsigned int)(pPtr-node.points);
if(node.numPoints>numPointsBound)
std::cerr<<"Too many points collected from temporary octrees"<<std::endl;
totalNumReadPoints+=node.numPoints;
std::cout<<"Creating partial octree for "<<node.numPoints<<" points"<<std::endl;
/* Process the node again using the second-stage method: */
createSubTreeWithPoints(node,nodeDomain);
/* Wait until all nodes in the node's subtree have been processed: */
subsampleQueue.waitForAlarm(numSubsampleThreads);
/* Check if the node's original point array still exists: */
if(node.pointsPrivate)
{
/* Copy the node's remaining points into a new array, and delete the original, much larger, point array: */
LidarPoint* newPoints=new LidarPoint[node.numPoints];
for(unsigned int i=0;i<node.numPoints;++i)
newPoints[i]=node.points[i];
delete[] node.points;
node.points=newPoints;
}
std::cout<<"Creating octree... "<<int(Math::floor(double(totalNumReadPoints)*100.0/double(totalNumPoints)+0.5))<<"% done"<<std::endl;
}
else
{
/* This node is empty; update the parent node's ready counter: */
if(node.parent!=0&&node.parent->numChildrenDone.preAdd(1)==8)
{
/* Subsample the parent node: */
subsampleQueue.push(node.parent);
}
}
}
void LidarOctreeCreator::createSubTreeWithPoints(LidarOctreeCreator::Node& node,const Cube& nodeDomain)
{
/* Check if the number of points is smaller than the maximum: */
if(node.numPoints<=size_t(maxNumPointsPerNode))
{
/* Create a leaf node: */
if(node.numPoints>0&&node.points==0)
std::cerr<<"Bad node at "<<&node<<std::endl;
if(maxNumPointsPerInteriorNode<node.numPoints)
maxNumPointsPerInteriorNode=node.numPoints;
/* Update the parent node's ready counter: */
if(node.parent!=0&&node.parent->numChildrenDone.preAdd(1)==8)
{
/* Subsample the parent node: */
subsampleQueue.push(node.parent);
}
}
else
{
/* Make the node an interior node: */
node.children=new Node[8];
totalNumNodes+=8;
/* Split the point array between the node's children: */
node.children[0].numPoints=node.numPoints;
node.children[0].points=node.points;
/* Split the point set along the three dimensions, according to the node's center: */
int numSplits=1;
int splitSize=4;
for(int i=2;i>=0;--i,numSplits<<=1,splitSize>>=1)
{
int leftIndex=0;
for(int j=0;j<numSplits;++j,leftIndex+=splitSize*2)
{
size_t leftNumPoints=splitPoints(node.children[leftIndex].points,node.children[leftIndex].numPoints,i,nodeDomain.getCenter(i));
node.children[leftIndex+splitSize].points=node.children[leftIndex].points+leftNumPoints;
node.children[leftIndex+splitSize].numPoints=node.children[leftIndex].numPoints-leftNumPoints;
node.children[leftIndex].numPoints=leftNumPoints;
}
}
/* Initialize the child nodes and create their subtrees: */
for(int childIndex=0;childIndex<8;++childIndex)
{
Node& child=node.children[childIndex];
child.parent=&node;
child.level=node.level+1;
createSubTreeWithPoints(node.children[childIndex],Cube(nodeDomain,childIndex));
}
}
}
void LidarOctreeCreator::calcFileOffsets(LidarOctreeCreator::Node& node,unsigned int level,LidarFile::Offset& octreeFilePos,LidarFile::Offset& dataFilePos)
{
if(level==0)
{
/* Calculate the node's offset: */
node.octreeNodeOffset=octreeFilePos;
octreeFilePos+=LidarFile::Offset(LidarOctreeFileNode::getFileSize());
/* Calculate the node's points' offsets: */
node.octreeDataOffset=dataFilePos;
dataFilePos+=LidarFile::Offset(node.numPoints);
}
else if(node.children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
calcFileOffsets(node.children[childIndex],level-1,octreeFilePos,dataFilePos);
}
}
void LidarOctreeCreator::writeIndexFileLevel(const LidarOctreeCreator::Node& node,unsigned int level,LidarFile& octreeFile)
{
if(level==0)
{
LidarOctreeFileNode ofn;
/* Find the node's children's offset: */
ofn.childrenOffset=LidarFile::Offset(0);
if(node.children!=0)
{
/* Store the offset of the node's first child: */
ofn.childrenOffset=node.children[0].octreeNodeOffset;
/* Check if the node's children have consecutive offsets (extra paranoia): */
for(int childIndex=1;childIndex<8;++childIndex)
if(node.children[childIndex].octreeNodeOffset!=ofn.childrenOffset+LidarFile::Offset(LidarOctreeFileNode::getFileSize()*childIndex))
Misc::throwStdErr("LidarOctreeCreator::writeIndexFileLevel: Node offset error in node %u",node.octreeNodeOffset);
}
/* Write the node's structure: */
ofn.detailSize=node.detailSize;
ofn.numPoints=node.numPoints;
ofn.dataOffset=node.octreeDataOffset;
ofn.write(octreeFile);
}
else if(node.children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
writeIndexFileLevel(node.children[childIndex],level-1,octreeFile);
}
}
void LidarOctreeCreator::writePointsFileLevel(const LidarOctreeCreator::Node& node,unsigned int level,LidarOctreeCreator::TempFile& tempPointFile,LidarFile& pointsFile)
{
if(level==0)
{
/* Check if the node's point data offset matches the current point file write position: */
if(pointsFile.getWritePos()!=sizeof(LidarDataFileHeader)+node.octreeDataOffset*sizeof(LidarPoint))
Misc::throwStdErr("LidarOctreeCreator::writePointsFileLevel: Wrong point data offset in octree node");
/* Calculate the starting offset of the node's point array in units of LiDAR points: */
size_t nodeStart=node.pointsOffset/sizeof(LidarPoint);
/* Check if the node's point array is outside the double buffer: */
if(nodeStart+node.numPoints>pointBufferStarts[2])
Misc::throwStdErr("LidarOctreeCreator::writePointsFileLevel: Node's point array outside of temp point buffer");
/* Copy node points from the double buffer halves: */
if(nodeStart<pointBufferStarts[1])
{
/* Copy points from the first buffer half: */
size_t numPoints=pointBufferStarts[1]-nodeStart;
if(numPoints>node.numPoints)
numPoints=node.numPoints;
const LidarPoint* pointData=pointBuffers[0]+(nodeStart-pointBufferStarts[0]);
pointsFile.write(pointData,numPoints);
if(pointBufferSizes[0]<numPoints)
Misc::throwStdErr("LidarOctreeCreator::writePointsFileLevel: Wrong number of points in temp point buffer");
pointBufferSizes[0]-=numPoints;
}
if(nodeStart+node.numPoints>pointBufferStarts[1])
{
/* Copy points from the second buffer half: */
size_t numPoints=nodeStart+node.numPoints-pointBufferStarts[1];
if(numPoints>node.numPoints)
numPoints=node.numPoints;
const LidarPoint* pointData=pointBuffers[1]+(nodeStart+node.numPoints-pointBufferStarts[1]-numPoints);
pointsFile.write(pointData,numPoints);
if(pointBufferSizes[1]<numPoints)
Misc::throwStdErr("LidarOctreeCreator::writePointsFileLevel: Wrong number of points in temp point buffer");
pointBufferSizes[1]-=numPoints;
}
/* Check if the first buffer half has become empty: */
if(pointBufferSizes[0]==0)
{
/* Move the second buffer half into the now empty first half: */
LidarPoint* emptyBuffer=pointBuffers[0];
pointBuffers[0]=pointBuffers[1];
pointBufferStarts[0]=pointBufferStarts[1];
pointBufferSizes[0]=pointBufferSizes[1];
pointBuffers[1]=emptyBuffer;
pointBufferStarts[1]=pointBufferStarts[2];
pointBufferSizes[1]=fileSize-pointBufferStarts[1];
if(pointBufferSizes[1]>pointBufferMaxSize)
pointBufferSizes[1]=pointBufferMaxSize;
tempPointFile.read(pointBuffers[1],pointBufferSizes[1]);
pointBufferStarts[2]=pointBufferStarts[1]+pointBufferSizes[1];
}
++numWrittenNodes;
if(numWrittenNodes>nextNumWrittenNodesUpdate)
{
int percent=int(Math::floor(double(numWrittenNodes)*100.0/double(totalNumNodes)+0.5));
std::cout<<"\b\b\b\b"<<std::setw(3)<<percent<<"%"<<std::flush;
nextNumWrittenNodesUpdate=((2U*(percent+1U)+1U)*totalNumNodes+199U)/200U;
}
}
else if(node.children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
writePointsFileLevel(node.children[childIndex],level-1,tempPointFile,pointsFile);
}
}
LidarOctreeCreator::LidarOctreeCreator(size_t sMaxNumCachablePoints,unsigned int sMaxNumPointsPerNode,int sNumSubsampleThreads,const LidarOctreeCreator::TempOctreeList& sTempOctrees,std::string sTempPointFileNameTemplate)
:maxNumCachablePoints(sMaxNumCachablePoints),
maxNumPointsPerNode(sMaxNumPointsPerNode),
tempOctrees(sTempOctrees),
domainBox(Box::empty),
numSubsampleThreads(sNumSubsampleThreads),subsampleThreads(0),
tempPointFileNameTemplate(sTempPointFileNameTemplate),
totalNumPoints(0),totalNumReadPoints(0),
totalNumNodes(1),
maxLevel(0),
maxNumPointsPerInteriorNode(0)
{
for(int i=0;i<2;++i)
pointBuffers[i]=0;
/* Calculate the total number of points and the union of all temporary octrees' bounding boxes: */
for(TempOctreeList::const_iterator toIt=tempOctrees.begin();toIt!=tempOctrees.end();++toIt)
{
domainBox.addBox((*toIt)->getPointBbox());
totalNumPoints+=(*toIt)->getTotalNumPoints();
}
/* Calculate the root node's domain: */
rootDomain=Cube(domainBox);
/* Initialize the temporary point file vector: */
tempPointFiles.push_back(new TempPointFile);
/* Start the subsampling threads: */
subsampleThreads=new Threads::Thread[numSubsampleThreads];
for(int i=0;i<numSubsampleThreads;++i)
subsampleThreads[i].start(this,&LidarOctreeCreator::subsampleThreadMethod);
/* Create the root's subtree: */
std::cout<<"Creating octree for "<<totalNumPoints<<" points"<<std::endl;
std::cout<<"Creating octree... 0% done"<<std::endl;
root.parent=0;
root.level=0;
createSubTree(root,rootDomain);
/* Send the end-of-queue sentinel values to shut down the subsampling threads: */
for(int i=0;i<numSubsampleThreads;++i)
subsampleQueue.push(0);
/* Wait for the subsampling threads to shut down: */
for(int i=0;i<numSubsampleThreads;++i)
subsampleThreads[i].join();
delete[] subsampleThreads;
subsampleThreads=0;
/* Write the root's point list and flush all point files: */
writeNodePoints(root);
for(TempPointFileList::iterator tpfIt=tempPointFiles.begin();tpfIt!=tempPointFiles.end();++tpfIt)
if((*tpfIt)->file!=0)
(*tpfIt)->file->flush();
std::cout<<std::endl;
if(totalNumReadPoints!=totalNumPoints)
std::cout<<"Read "<<totalNumReadPoints<<" from temporary octree files instead of "<<totalNumPoints<<std::endl;
std::cout<<"Octree contains "<<totalNumNodes<<" nodes with up to "<<maxNumPointsPerInteriorNode<<" points per node in "<<maxLevel+1<<" resolution levels"<<std::endl;
/* Calculate the octree nodes' file offsets: */
LidarFile::Offset octreeFilePos=LidarFile::Offset(LidarOctreeFileHeader::getFileSize());
LidarFile::Offset dataFilePos=LidarFile::Offset(0);
for(unsigned int level=0;level<=maxLevel;++level)
{
std::cout<<"Processing octree level "<<level<<std::endl;
calcFileOffsets(root,level,octreeFilePos,dataFilePos);
}
std::cout<<"Octree file sizes are "<<octreeFilePos<<" bytes and "<<LidarFile::Offset(LidarDataFileHeader::getFileSize())+dataFilePos*LidarFile::Offset(sizeof(LidarPoint))<<" bytes"<<std::endl;
}
LidarOctreeCreator::~LidarOctreeCreator(void)
{
/* Delete the subsampling threads: */
delete[] subsampleThreads;
/* Delete the temporary point files: */
for(TempPointFileList::iterator tpfIt=tempPointFiles.begin();tpfIt!=tempPointFiles.end();++tpfIt)
{
if((*tpfIt)->file!=0)
{
delete (*tpfIt)->file;
// unlink((*tpfIt)->fileName.c_str());
delete *tpfIt;
}
}
/* Delete the point writing buffer: */
for(int i=0;i<2;++i)
delete[] pointBuffers[i];
}
void LidarOctreeCreator::write(size_t memorySize,const char* lidarFileName)
{
/*********************************************************************
Try creating the new LiDAR file base directory (oh, this can fail in
so many ways...):
*********************************************************************/
/* Check if a file or directory of the given name already exists: */
struct stat statBuffer;
if(stat(lidarFileName,&statBuffer)==0)
{
/* Check if it's a directory: */
if(S_ISDIR(statBuffer.st_mode))
{
/* Create a list of all files or subdirectories in the directory: */
std::vector<std::string> files;
DIR* dir=opendir(lidarFileName);
if(dir!=0)
{
struct dirent* entry;
while((entry=readdir(dir))!=0)
if(strcmp(entry->d_name,".")!=0&&strcmp(entry->d_name,"..")!=0)
{
std::string file=lidarFileName;
file.push_back('/');
file.append(entry->d_name);
files.push_back(file);
}
closedir(dir);
/* Try deleting all files: */
for(std::vector<std::string>::const_iterator fIt=files.begin();fIt!=files.end();++fIt)
{
if(unlink(fIt->c_str())<0)
Misc::throwStdErr("LidarOctreeCreator::write: Directory %s already exists, and file %s cannot be deleted",lidarFileName,fIt->c_str());
}
}
else
Misc::throwStdErr("LidarOctreeCreator::write: Directory %s already exists but could not be opened",lidarFileName);
}
else
{
if(unlink(lidarFileName)==0)
{
if(mkdir(lidarFileName,0777)<0)
Misc::throwStdErr("LidarOctreeCreator::write: Could not create LiDAR file %s",lidarFileName);
}
else
Misc::throwStdErr("LidarOctreeCreator::write: File %s already exists and could not be removed",lidarFileName);
}
}
else
{
if(mkdir(lidarFileName,0777)<0)
Misc::throwStdErr("LidarOctreeCreator::write: Could not create LiDAR file %s",lidarFileName);
}
/* Create the octree file: */
{
std::cout<<"Writing octree index file..."<<std::flush;
std::string octreeFileName=lidarFileName;
octreeFileName.push_back('/');
octreeFileName.append("Index");
LidarFile octreeFile(octreeFileName.c_str(),IO::File::WriteOnly);
octreeFile.setEndianness(Misc::LittleEndian);
/* Write the octree file header: */
LidarOctreeFileHeader ofh(rootDomain,maxNumPointsPerInteriorNode);
ofh.write(octreeFile);
/* Write the octree index file: */
for(int level=0;level<=maxLevel;++level)
writeIndexFileLevel(root,level,octreeFile);
std::cout<<" done"<<std::endl;
}
/* Create the point data file: */
{
std::cout<<"Writing octree points file... 0%"<<std::flush;
std::string pointFileName=lidarFileName;
pointFileName.push_back('/');
pointFileName.append("Points");
LidarFile pointFile(pointFileName.c_str(),IO::File::WriteOnly);
pointFile.setEndianness(Misc::LittleEndian);
/* Write the point data file header: */
LidarDataFileHeader dfh((unsigned int)(sizeof(LidarPoint)));
dfh.write(pointFile);
/* Create the point file double-buffer: */
pointBufferMaxSize=(memorySize/sizeof(LidarPoint))/2;
for(int i=0;i<2;++i)
pointBuffers[i]=new LidarPoint[pointBufferMaxSize];
/* Write the octree points file: */
numWrittenNodes=0;
nextNumWrittenNodesUpdate=(totalNumNodes+199U)/200U;
for(int level=0;level<=maxLevel;++level)
{
/* Fill the double-buffer from the temporary point file for this level: */
fileSize=tempPointFiles[level]->file->getWritePos()/sizeof(LidarPoint);
tempPointFiles[level]->file->setReadPosAbs(0);
pointBufferStarts[0]=TempFile::Offset(0);
for(int i=0;i<2;++i)
{
pointBufferSizes[i]=fileSize-pointBufferStarts[i];
if(pointBufferSizes[i]>pointBufferMaxSize)
pointBufferSizes[i]=pointBufferMaxSize;
tempPointFiles[level]->file->read(pointBuffers[i],pointBufferSizes[i]);
pointBufferStarts[i+1]=pointBufferStarts[i]+pointBufferSizes[i];
}
/* Write the level's nodes: */
writePointsFileLevel(root,level,*tempPointFiles[level]->file,pointFile);
/* Delete the level's temporary point file: */
delete tempPointFiles[level]->file;
// unlink(tempPointFiles[level]->fileName.c_str());
delete tempPointFiles[level];
}
for(int i=0;i<2;++i)
{
delete[] pointBuffers[i];
pointBuffers[i]=0;
}
tempPointFiles.clear();
std::cout<<"\b\b\b\bdone"<<std::endl;
}
}