forked from KeckCAVES/LidarViewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LidarOctree.icpp
464 lines (426 loc) · 13.2 KB
/
LidarOctree.icpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/***********************************************************************
LidarOctree - Class to render multiresolution LiDAR point sets.
Copyright (c) 2005-2013 Oliver Kreylos
This file is part of the LiDAR processing and analysis package.
The LiDAR processing and analysis package is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The LiDAR processing and analysis package is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the LiDAR processing and analysis package; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
***********************************************************************/
#define LIDAROCTREE_IMPLEMENTATION
#include "LidarOctree.h"
/****************************
Methods of class LidarOctree:
****************************/
template <class VertexParam>
inline
bool
LidarOctree::selectPoint(
LidarOctree::Node* node,
unsigned int pointIndex)
{
/* Create a selection mask if there is none already: */
if(node->selectedPoints==0)
{
node->selectedPoints=new bool[maxNumPointsPerNode];
for(unsigned int i=0;i<node->numPoints;++i)
node->selectedPoints[i]=false;
node->selectedPointColors=new Vertex::Color[maxNumPointsPerNode];
}
/* Select this point: */
if(!node->selectedPoints[pointIndex])
{
node->selectedPoints[pointIndex]=true;
Vertex::Color& col=static_cast<VertexParam*>(node->points)[pointIndex].color;
node->selectedPointColors[pointIndex]=col;
float intensity=float(col[0])*0.299f+float(col[1])*0.587f+float(col[2])*0.114f;
if(intensity<127.5f)
{
col[0]=GLubyte(0);
col[1]=GLubyte(intensity+127.5f);
col[2]=GLubyte(0);
}
else
{
col[0]=GLubyte(intensity-127.5f);
col[1]=GLubyte(255);
col[2]=GLubyte(intensity-127.5f);
}
return true;
}
else
return false;
}
template <class VertexParam>
inline
void
LidarOctree::selectPointsInNode(
LidarOctree::Node* node,
const LidarOctree::Interactor& interactor)
{
/* Select all points inside the interactor's region of influence in this node: */
bool pointsChanged=false;
VertexParam* points=static_cast<VertexParam*>(node->points);
Scalar ir2=Math::sqr(interactor.radius);
for(unsigned int i=0;i<node->numPoints;++i)
{
Scalar pdist2=Geometry::sqrDist(interactor.center,points[i].position);
if(pdist2<ir2)
{
/* Select the point: */
pointsChanged=selectPoint<VertexParam>(node,i)||pointsChanged;
}
}
/* Check if the points array has to be invalidated: */
if(pointsChanged)
++node->pointsVersion;
}
template <class VertexParam>
inline
void
LidarOctree::deselectPointsInNode(
LidarOctree::Node* node,
const LidarOctree::Interactor& interactor)
{
/* Deselect all points inside the interactor's region of influence in this node: */
bool pointsChanged=false;
bool hasSelectedPoints=false;
VertexParam* points=static_cast<VertexParam*>(node->points);
Scalar ir2=Math::sqr(interactor.radius);
for(unsigned int i=0;i<node->numPoints;++i)
{
Scalar pdist2=Geometry::sqrDist(interactor.center,points[i].position);
if(pdist2<ir2)
{
/* Deselect this point: */
if(node->selectedPoints[i])
{
node->selectedPoints[i]=false;
points[i].color=node->selectedPointColors[i];
pointsChanged=true;
}
}
hasSelectedPoints=hasSelectedPoints||node->selectedPoints[i];
}
/* Destroy the selection mask if there are no selected points: */
if(!hasSelectedPoints)
{
delete[] node->selectedPoints;
node->selectedPoints=0;
delete[] node->selectedPointColors;
node->selectedPointColors=0;
}
/* Check if the points array has to be invalidated: */
if(pointsChanged)
++node->pointsVersion;
}
template <class VertexParam,class PointProcessorParam>
inline
void
LidarOctree::processPointsInBox(
const Box& box,
const LidarOctree::Node* node,
PointProcessorParam& pp) const
{
/* Bail out if the node does not overlap the box: */
if(node->domain.compareBox(box)==Cube::SEPARATE)
return;
if(node->children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
processPointsInBox<VertexParam,PointProcessorParam>(box,&node->children[childIndex],pp);
}
else if(node->numPoints>0)
{
const VertexParam* points=static_cast<const VertexParam*>(node->points);
for(unsigned int i=0;i<node->numPoints;++i)
if(box.contains(points[i].position))
{
/* Process the point's original LiDAR value: */
LidarPoint lp=points[i].position;
if(node->selectedPointColors!=0)
{
for(int j=0;j<4;++j)
lp.value[j]=node->selectedPointColors[i][j];
}
else
{
for(int j=0;j<4;++j)
lp.value[j]=points[i].color[j];
}
pp(lp);
}
}
}
namespace {
/*******************************************************************
Helper function to traverse points inside a leaf node of the octree:
*******************************************************************/
template <class VertexParam,class DirectedProcessFunctorParam>
inline
void
processPointsDirectedKdtree(
const VertexParam* points,
const typename VertexParam::Color* colors,
unsigned int left,
unsigned int right,
unsigned int splitDimension,
DirectedProcessFunctorParam& dpp)
{
/* Calculate the index of this kd-tree node: */
unsigned int mid=(left+right)>>1;
unsigned int childSplitDimension=splitDimension+1;
if(childSplitDimension==3)
childSplitDimension=0;
/* Traverse into child closer to query point: */
if(dpp.getQueryPoint()[splitDimension]<points[mid].position[splitDimension])
{
/* Traverse left child: */
if(left<mid)
processPointsDirectedKdtree(points,colors,left,mid-1,childSplitDimension,dpp);
/* Process the point's original LiDAR value: */
LidarPoint lp=points[mid].position;
if(colors!=0)
{
for(int j=0;j<4;++j)
lp.value[j]=colors[mid][j];
}
else
{
for(int j=0;j<4;++j)
lp.value[j]=points[mid].color[j];
}
dpp(lp);
/* Traverse right child: */
if(right>mid&&Math::sqr(dpp.getQueryPoint()[splitDimension]-points[mid].position[splitDimension])<=dpp.getQueryRadius2())
processPointsDirectedKdtree(points,colors,mid+1,right,childSplitDimension,dpp);
}
else
{
/* Traverse right child: */
if(right>mid)
processPointsDirectedKdtree(points,colors,mid+1,right,childSplitDimension,dpp);
/* Process the point's original LiDAR value: */
LidarPoint lp=points[mid].position;
if(colors!=0)
{
for(int j=0;j<4;++j)
lp.value[j]=colors[mid][j];
}
else
{
for(int j=0;j<4;++j)
lp.value[j]=points[mid].color[j];
}
dpp(lp);
/* Traverse left child: */
if(left<mid&&Math::sqr(dpp.getQueryPoint()[splitDimension]-points[mid].position[splitDimension])<=dpp.getQueryRadius2())
processPointsDirectedKdtree(points,colors,left,mid-1,childSplitDimension,dpp);
}
}
}
template <class VertexParam,class DirectedPointProcessorParam>
inline
void
LidarOctree::processPointsDirected(
const LidarOctree::Node* node,
DirectedPointProcessorParam& dpp) const
{
/* Check if the node is a leaf node in the current in-memory tree: */
if(node->children==0)
{
/* Process all points in the node: */
if(node->numPoints>0)
{
const VertexParam* points=static_cast<const VertexParam*>(node->points);
processPointsDirectedKdtree<VertexParam,DirectedPointProcessorParam>(points,node->selectedPointColors,0,node->numPoints-1,0,dpp);
}
}
else
{
/*****************************************************************
The following code is quite dense. The first loop finds the index
of the child node that contains the query point, and the second
loop traverses the child nodes in order of increasing distance
from the query point by using bit index magic with XOR. The
distance calculation only adds up distances along those axes where
the query point and the child node are on different sides of the
node's splitting planes. As a result, it calculates the actual
(squared) Minkowski distance from the node's domain to the query
point. It is recommended to make a diagram and work through the
code to actually understand what happens here.
*****************************************************************/
/* Find child node containing query point: */
int queryChildIndex=0x0;
Scalar dist2s[3];
for(int i=0;i<3;++i)
{
Scalar dist=dpp.getQueryPoint()[i]-node->domain.getCenter(i);
if(dist>=Scalar(0))
queryChildIndex|=0x1<<i;
dist2s[i]=Math::sqr(dist);
}
/* Calculate the traversal order: */
int traversalOrder=0;
if(dist2s[0]<=dist2s[1])
{
if(dist2s[1]<=dist2s[2])
traversalOrder=0;
else if(dist2s[0]<=dist2s[2])
traversalOrder=1;
else
traversalOrder=4;
}
else
{
if(dist2s[1]>dist2s[2])
traversalOrder=5;
else if(dist2s[0]>dist2s[2])
traversalOrder=3;
else
traversalOrder=2;
}
/* Recurse into the node's children: */
static const int childOrders[6][8]=
{
{0,1,2,3,4,5,6,7}, // Flip x, then y, then z
{0,1,4,5,2,3,6,7}, // Flip x, then z, then y
{0,2,1,3,4,6,5,7}, // Flip y, then x, then z
{0,2,4,6,1,3,5,7}, // Flip y, then z, then x
{0,4,1,5,2,6,3,7}, // Flip z, then x, then y
{0,4,2,6,1,5,3,7}, // Flip z, then y, then x
};
for(int ci=0;ci<8;++ci)
{
/* Get the index of the child node actually entered: */
int childIndex=childOrders[traversalOrder][ci];
const Node* child=&node->children[childIndex^queryChildIndex];
/* Enter the child node if it overlaps the query sphere: */
if(child->domain.sqrDist(dpp.getQueryPoint())<dpp.getQueryRadius2())
processPointsDirected<VertexParam,DirectedPointProcessorParam>(child,dpp);
}
}
}
template <class VertexParam,class PointProcessorParam>
inline
void
LidarOctree::processSelectedPoints(
const LidarOctree::Node* node,
PointProcessorParam& pp) const
{
if(node->children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
processSelectedPoints<VertexParam,PointProcessorParam>(&node->children[childIndex],pp);
}
else if(node->selectedPoints!=0)
{
/* Process all selected points in this node: */
const VertexParam* points=static_cast<const VertexParam*>(node->points);
for(unsigned int i=0;i<node->numPoints;++i)
if(node->selectedPoints[i])
{
/* Process the point's original LiDAR value: */
LidarPoint lp=points[i].position;
for(int j=0;j<4;++j)
lp.value[j]=node->selectedPointColors[i][j];
pp(lp);
}
}
}
template <class PointNormalProcessorParam>
inline
void
LidarOctree::processSelectedPointsWithNormals(
const LidarOctree::Node* node,
PointNormalProcessorParam& pp) const
{
if(node->children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
processSelectedPointsWithNormals<PointNormalProcessorParam>(&node->children[childIndex],pp);
}
else if(node->selectedPoints!=0)
{
/* Process all selected points in this node: */
const NVertex* points=static_cast<const NVertex*>(node->points);
for(unsigned int i=0;i<node->numPoints;++i)
if(node->selectedPoints[i])
{
/* Process the point's original LiDAR value and normal vector: */
LidarPoint lp=points[i].position;
for(int j=0;j<4;++j)
lp.value[j]=node->selectedPointColors[i][j];
pp(lp,points[i].normal);
}
}
}
template <class PointNormalProcessorParam>
inline
void
LidarOctree::processSelectedPointsWithNullNormals(
const LidarOctree::Node* node,
PointNormalProcessorParam& pp) const
{
if(node->children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
processSelectedPointsWithNullNormals<PointNormalProcessorParam>(&node->children[childIndex],pp);
}
else if(node->selectedPoints!=0)
{
/* Process all selected points in this node: */
const Vertex* points=static_cast<const Vertex*>(node->points);
for(unsigned int i=0;i<node->numPoints;++i)
if(node->selectedPoints[i])
{
/* Process the point's original LiDAR value: */
LidarPoint lp=points[i].position;
for(int j=0;j<4;++j)
lp.value[j]=node->selectedPointColors[i][j];
pp(lp,Vector::zero);
}
}
}
template <class VertexParam,class ColoringPointProcessorParam>
inline
void
LidarOctree::colorSelectedPoints(
LidarOctree::Node* node,
ColoringPointProcessorParam& cpp)
{
if(node->selectedPoints!=0)
{
/* Color all selected points in this node: */
VertexParam* points=static_cast<VertexParam*>(node->points);
for(unsigned int i=0;i<node->numPoints;++i)
if(node->selectedPoints[i])
{
/* Process the point's original LiDAR value, but pass the selected color along: */
LidarPoint lp=points[i].position;
for(int j=0;j<4;++j)
lp.value[j]=node->selectedPointColors[i][j];
cpp(lp,points[i].color);
}
/* Invalidate the node's point array: */
++node->pointsVersion;
}
if(node->children!=0)
{
/* Recurse into the node's children: */
for(int childIndex=0;childIndex<8;++childIndex)
colorSelectedPoints<VertexParam,ColoringPointProcessorParam>(&node->children[childIndex],cpp);
}
}