-
Notifications
You must be signed in to change notification settings - Fork 50
/
fddb.py
107 lines (99 loc) · 3.79 KB
/
fddb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python2.7
# pylint: disable=bad-indentation, no-member, invalid-name, line-too-long
import argparse
import cv2
import caffe
from jfda.config import cfg
from jfda.utils import get_logger, Timer
from jfda.detector import JfdaDetector
def main(args):
if args.net == 'p':
net = ['proto/p.prototxt', 'model/p.caffemodel']
elif args.net == 'r':
net = ['proto/p.prototxt', 'model/p.caffemodel',
'proto/r.prototxt', 'model/r.caffemodel']
else:
net = ['proto/p.prototxt', 'model/p.caffemodel',
'proto/r.prototxt', 'model/r.caffemodel',
'proto/o.prototxt', 'model/o.caffemodel',]
detector = JfdaDetector(net)
if args.pnet_single:
detector.set_pnet_single_forward(True)
logger = get_logger()
counter = 0
timer = Timer()
param = {
'ths': [0.5, 0.5, 0.4],
'factor': 0.709,
'min_size': 24,
}
total_time = 0.
total_width = 0
total_height = 0
for i in range(10):
logger.info('Process FOLD-%02d', i)
txt_in = cfg.FDDB_DIR + '/FDDB-folds/FDDB-fold-%02d.txt'%(i + 1)
txt_out = cfg.FDDB_DIR + '/result/fold-%02d-out.txt'%(i + 1)
answer_in = cfg.FDDB_DIR + '/FDDB-folds/FDDB-fold-%02d-ellipseList.txt'%(i + 1)
fin = open(txt_in, 'r')
fout = open(txt_out, 'w')
ain = open(answer_in, 'r')
for line in fin.readlines():
line = line.strip()
in_file = cfg.FDDB_DIR + '/images/' + line + '.jpg'
out_file = cfg.FDDB_DIR + '/result/images/' + line.replace('/', '-') + '.jpg'
counter += 1
img = cv2.imread(in_file, cv2.IMREAD_COLOR)
timer.tic()
bboxes = detector.detect(img, **param)
timer.toc()
total_time += timer.elapsed()
h, w = img.shape[:-1]
total_height += h
total_width += w
logger.info('Detect %04d th image costs %.04lfs, average %.04lfs, %d x %d', counter,
timer.elapsed(), total_time / counter, total_height / counter, total_width / counter)
fout.write('%s\n'%line)
fout.write('%d\n'%len(bboxes))
for bbox in bboxes:
x1, y1, x2, y2, score = bbox[:5]
fout.write('%lf %lf %lf %lf %lf\n'%(x1, y1, x2 - x1, y2 - y1, score))
# draw ground truth
ain.readline() # remove fname
n = int(ain.readline().strip())
for i in range(n):
line = ain.readline().strip()
components = [float(_) for _ in line.split(' ')[:5]]
major_axis_radius, minor_axis_radius, angle, center_x, center_y = components
angle = angle / 3.1415926 * 180.
center_x, center_y = int(center_x), int(center_y)
major_axis_radius, minor_axis_radius = int(major_axis_radius), int(minor_axis_radius)
cv2.ellipse(img, (center_x, center_y), (major_axis_radius, minor_axis_radius), angle, 0, 360, (255, 0, 0), 2)
# draw and save
for bbox in bboxes:
x1, y1, x2, y2, score = bbox[:5]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(img, '%.03f'%score, (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
landmark = bbox[9:].reshape((5, 2))
for x, y in landmark:
x, y = int(x), int(y)
cv2.circle(img, (x, y), 2, (0, 255, 0), -1)
cv2.imwrite(out_file, img)
fin.close()
fout.close()
ain.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1, help='gpu id to use, -1 for cpu')
parser.add_argument('--net', type=str, default='o', help='net type to do fddb benchmark')
parser.add_argument('--pnet-single', action='store_true', help='pnet use single forward')
args = parser.parse_args()
assert args.net in ['p', 'r', 'o']
print args
if args.gpu >= 0:
caffe.set_mode_gpu()
caffe.set_device(args.gpu)
else:
caffe.set_mode_cpu()
main(args)