-
Notifications
You must be signed in to change notification settings - Fork 2
/
rnn_train_sc_dream_1.py
209 lines (171 loc) · 7.86 KB
/
rnn_train_sc_dream_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
'''
train mdn-rnn from pre-processed data.
also save 1000 initial mu and logvar, for generative experiments (not related to training).
'''
import numpy as np
import os
import json
import tensorflow as tf
import random
import time
from rnn.rnn_dream import reset_graph, HyperParams, DreamModel
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="7"
np.set_printoptions(precision=4, edgeitems=6, linewidth=100, suppress=True)
ITERATION_INDEX = "1"
model_save_path = "tf_models" + "_" + ITERATION_INDEX
model_rnn_size = 512
model_num_mixture = 5
model_restart_factor = 10.
model_seq_length = 300
DATA_DIR = "series_dream" + "_" + ITERATION_INDEX
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
initial_z_save_path = "tf_models" + "_" + ITERATION_INDEX
if not os.path.exists(initial_z_save_path):
os.makedirs(initial_z_save_path)
def get_one_hot(targets, nb_classes):
res = np.eye(nb_classes)[np.array(targets).reshape(-1)]
return res.reshape(list(targets.shape)+[nb_classes])
def default_hps():
return HyperParams(num_steps=2000, # train model for 2000 steps.
max_seq_len=model_seq_length, # train on sequences of 500 (found it worked better than 1000)
seq_width=64, # width of our data (64)
rnn_size=model_rnn_size, # number of rnn cells
batch_size=100, # minibatch sizes
grad_clip=1.0,
num_mixture=model_num_mixture, # number of mixtures in MDN
restart_factor=model_restart_factor, # factor of importance for restart=1 rare case for loss.
learning_rate=0.001,
decay_rate=0.99999,
min_learning_rate=0.00001,
use_layer_norm=0, # set this to 1 to get more stable results (less chance of NaN), but slower
use_recurrent_dropout=0,
recurrent_dropout_prob=0.90,
use_input_dropout=0,
input_dropout_prob=0.90,
use_output_dropout=0,
output_dropout_prob=0.90,
is_training=1)
hps_model = default_hps()
hps_sample = hps_model._replace(batch_size=1, max_seq_len=2, use_recurrent_dropout=0, is_training=0)
# load preprocessed data
raw_data = np.load(os.path.join(DATA_DIR, "series.npz"))
raw_data_mu = raw_data["mu"]
raw_data_logvar = raw_data["logvar"]
raw_data_action = raw_data["action"]
raw_data_obs = raw_data["obs"]
raw_data_reward = raw_data["reward"]
def load_series_data():
all_data = []
for i in range(len(raw_data_mu)):
action = raw_data_action[i]
mu = raw_data_mu[i]
logvar = raw_data_logvar[i]
obs = raw_data_obs[i]
reward = raw_data_reward[i]
all_data.append([mu, logvar, action, obs, reward])
return all_data
def get_frame_count(all_data):
frame_count = []
for data in all_data:
frame_count.append(len(data[0]))
return np.sum(frame_count)
def create_batches(all_data, batch_size=100, seq_length=model_seq_length):
num_frames = get_frame_count(all_data)
num_batches = int(num_frames/(batch_size*seq_length))
num_frames_adjusted = num_batches*batch_size*seq_length
random.shuffle(all_data)
num_frames = get_frame_count(all_data)
data_mu = np.zeros((num_frames, N_z), dtype=np.float16)
data_logvar = np.zeros((num_frames, N_z), dtype=np.float16)
data_action = np.zeros(num_frames, dtype=np.uint8)
data_obs = np.zeros((num_frames, F_z), dtype=np.uint16)
data_reward = np.zeros(num_frames, dtype=np.uint8)
data_restart = np.zeros(num_frames, dtype=np.uint8)
idx = 0
for data in all_data:
mu, logvar, action, obs, reward=data
N = len(action)
data_mu[idx:idx+N] = mu.reshape(N, N_z)
data_logvar[idx:idx+N] = logvar.reshape(N, N_z)
data_action[idx:idx+N] = action.reshape(N)
data_obs[idx:idx+N] = obs.reshape(N, F_z)
data_reward[idx:idx+N] = reward.reshape(N)
data_restart[idx]=1
idx += N
data_mu = data_mu[0:num_frames_adjusted]
data_logvar = data_logvar[0:num_frames_adjusted]
data_action = data_action[0:num_frames_adjusted]
data_obs = data_obs[0:num_frames_adjusted]
data_reward = data_reward[0:num_frames_adjusted]
data_restart = data_restart[0:num_frames_adjusted]
data_mu = np.split(data_mu.reshape(batch_size, -1, N_z), num_batches, 1)
data_logvar = np.split(data_logvar.reshape(batch_size, -1, N_z), num_batches, 1)
data_action = np.split(data_action.reshape(batch_size, -1), num_batches, 1)
data_obs = np.split(data_obs.reshape(batch_size, -1, F_z), num_batches, 1)
data_reward = np.split(data_reward.reshape(batch_size, -1), num_batches, 1)
data_restart = np.split(data_restart.reshape(batch_size, -1), num_batches, 1)
return data_mu, data_logvar, data_action, data_obs, data_reward, data_restart
def get_batch(batch_idx, data_mu, data_logvar, data_action, data_obs, data_reward, data_restart):
batch_mu = data_mu[batch_idx]
batch_logvar = data_logvar[batch_idx]
batch_action = data_action[batch_idx]
batch_restart = data_restart[batch_idx]
batch_s = batch_logvar.shape
batch_z = batch_mu + np.exp(batch_logvar/2.0) * np.random.randn(*batch_s)
batch_obs = data_obs[batch_idx]
batch_reward = data_reward[batch_idx]
return batch_z, batch_obs, batch_action, batch_reward, batch_restart
# process data
all_data = load_series_data()
max_seq_len = hps_model.max_seq_len
N_z = hps_model.seq_width
F_z = 20
# save 1000 initial mu and logvars:
initial_mu = []
initial_logvar = []
initial_nonimage_feature = []
for i in range(1000):
mu = np.copy(raw_data_mu[i][0, :]*10000).astype(np.int).tolist()
logvar = np.copy(raw_data_logvar[i][0, :]*10000).astype(np.int).tolist()
nonimage_feature = np.copy(raw_data_obs[i][0, :]).astype(np.int).tolist()
initial_mu.append(mu)
initial_logvar.append(logvar)
initial_nonimage_feature.append(nonimage_feature)
with open(os.path.join(model_save_path, "initial_z.json"), 'wt') as outfile:
json.dump([initial_mu, initial_logvar, initial_nonimage_feature], outfile, sort_keys=True, indent=0, separators=(',', ': '))
reset_graph()
model = DreamModel(hps_model)
hps = hps_model
start = time.time()
for epoch in range(1, 401):
print('preparing data for epoch', epoch)
data_mu, data_logvar, data_action, data_obs, data_reward, data_restart= 0, 0, 0, 0, 0, 0
data_mu, data_logvar, data_action, data_obs, data_reward, data_restart= create_batches(all_data)
num_batches = len(data_mu)
print('number of batches', num_batches)
end = time.time()
time_taken = end-start
print('time taken to create batches', time_taken)
batch_state = model.sess.run(model.initial_state)
for local_step in range(num_batches):
batch_z, batch_obs, batch_action, batch_reward, batch_restart = get_batch(local_step, data_mu, data_logvar, data_action, data_obs, data_reward, data_restart)
step = model.sess.run(model.global_step)
curr_learning_rate = (hps.learning_rate-hps.min_learning_rate) * (hps.decay_rate) ** step + hps.min_learning_rate
feed = {model.batch_z: batch_z,
model.batch_obs: batch_obs,
model.batch_action: batch_action,
model.batch_reward: batch_reward,
model.batch_restart: batch_restart,
model.initial_state: batch_state,
model.lr: curr_learning_rate}
(train_cost, z_cost, r_cost, batch_state, train_step, _) = model.sess.run([model.cost, model.z_cost, model.r_cost, model.final_state, model.global_step, model.train_op], feed)
if (step%20==0 and step > 0):
end = time.time()
time_taken = end-start
start = time.time()
output_log = "step: %d, lr: %.6f, cost: %.4f, z_cost: %.4f, r_cost: %.4f, train_time_taken: %.4f" % (step, curr_learning_rate, train_cost, z_cost, r_cost, time_taken)
print(output_log)
# save the model (don't bother with tf checkpoints json all the way ...)
model.save_json(os.path.join(model_save_path, "rnn.json"))