forked from dasmith/stanford-corenlp-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
corenlp.py
261 lines (224 loc) · 9.81 KB
/
corenlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
#
# corenlp - Python interface to Stanford Core NLP tools
# Copyright (c) 2014 Dustin Smith
# https://github.com/dasmith/stanford-corenlp-python
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
import json
import optparse
import os, re, sys, time, traceback
import jsonrpc, pexpect
from progressbar import ProgressBar, Fraction
import logging
VERBOSE = True
STATE_START, STATE_TEXT, STATE_WORDS, STATE_TREE, STATE_DEPENDENCY, STATE_COREFERENCE = 0, 1, 2, 3, 4, 5
WORD_PATTERN = re.compile('\[([^\]]+)\]')
CR_PATTERN = re.compile(r"\((\d*),(\d)*,\[(\d*),(\d*)\]\) -> \((\d*),(\d)*,\[(\d*),(\d*)\]\), that is: \"(.*)\" -> \"(.*)\"")
# initialize logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def remove_id(word):
"""Removes the numeric suffix from the parsed recognized words: e.g. 'word-2' > 'word' """
return word.count("-") == 0 and word or word[0:word.rindex("-")]
def parse_bracketed(s):
'''Parse word features [abc=... def = ...]
Also manages to parse out features that have XML within them
'''
word = None
attrs = {}
temp = {}
# Substitute XML tags, to replace them later
for i, tag in enumerate(re.findall(r"(<[^<>]+>.*<\/[^<>]+>)", s)):
temp["^^^%d^^^" % i] = tag
s = s.replace(tag, "^^^%d^^^" % i)
# Load key-value pairs, substituting as necessary
for attr, val in re.findall(r"([^=\s]*)=([^=\s]*)", s):
if val in temp:
val = temp[val]
if attr == 'Text':
word = val
else:
attrs[attr] = val
return (word, attrs)
def parse_parser_results(text):
""" This is the nasty bit of code to interact with the command-line
interface of the CoreNLP tools. Takes a string of the parser results
and then returns a Python list of dictionaries, one for each parsed
sentence.
"""
results = {"sentences": []}
state = STATE_START
for line in text.encode('utf-8').split("\n"):
line = line.strip()
if line.startswith("Sentence #"):
sentence = {'words':[], 'parsetree':[], 'dependencies':[]}
results["sentences"].append(sentence)
state = STATE_TEXT
elif state == STATE_TEXT:
sentence['text'] = line
state = STATE_WORDS
elif state == STATE_WORDS:
if not line.startswith("[Text="):
raise Exception('Parse error. Could not find "[Text=" in: %s' % line)
for s in WORD_PATTERN.findall(line):
sentence['words'].append(parse_bracketed(s))
state = STATE_TREE
elif state == STATE_TREE:
if len(line) == 0:
state = STATE_DEPENDENCY
sentence['parsetree'] = " ".join(sentence['parsetree'])
else:
sentence['parsetree'].append(line)
elif state == STATE_DEPENDENCY:
if len(line) == 0:
state = STATE_COREFERENCE
else:
split_entry = re.split("\(|, ", line[:-1])
if len(split_entry) == 3:
rel, left, right = map(lambda x: remove_id(x), split_entry)
sentence['dependencies'].append(tuple([rel,left,right]))
elif state == STATE_COREFERENCE:
if "Coreference set" in line:
if 'coref' not in results:
results['coref'] = []
coref_set = []
results['coref'].append(coref_set)
else:
for src_i, src_pos, src_l, src_r, sink_i, sink_pos, sink_l, sink_r, src_word, sink_word in CR_PATTERN.findall(line):
src_i, src_pos, src_l, src_r = int(src_i)-1, int(src_pos)-1, int(src_l)-1, int(src_r)-1
sink_i, sink_pos, sink_l, sink_r = int(sink_i)-1, int(sink_pos)-1, int(sink_l)-1, int(sink_r)-1
coref_set.append(((src_word, src_i, src_pos, src_l, src_r), (sink_word, sink_i, sink_pos, sink_l, sink_r)))
return results
class StanfordCoreNLP(object):
"""
Command-line interaction with Stanford's CoreNLP java utilities.
Can be run as a JSON-RPC server or imported as a module.
"""
def __init__(self, corenlp_path=None):
"""
Checks the location of the jar files.
Spawns the server as a process.
"""
jars = ["stanford-corenlp-3.4.1.jar",
"stanford-corenlp-3.4.1-models.jar",
"joda-time.jar",
"xom.jar",
"jollyday.jar"]
# if CoreNLP libraries are in a different directory,
# change the corenlp_path variable to point to them
if not corenlp_path:
corenlp_path = "./stanford-corenlp-full-2014-08-27/"
java_path = "java"
classname = "edu.stanford.nlp.pipeline.StanfordCoreNLP"
# include the properties file, so you can change defaults
# but any changes in output format will break parse_parser_results()
props = "-props default.properties"
# add and check classpaths
jars = [corenlp_path + jar for jar in jars]
for jar in jars:
if not os.path.exists(jar):
logger.error("Error! Cannot locate %s" % jar)
sys.exit(1)
# spawn the server
start_corenlp = "%s -Xmx1800m -cp %s %s %s" % (java_path, ':'.join(jars), classname, props)
if VERBOSE:
logger.debug(start_corenlp)
self.corenlp = pexpect.spawn(start_corenlp)
# show progress bar while loading the models
widgets = ['Loading Models: ', Fraction()]
pbar = ProgressBar(widgets=widgets, maxval=5, force_update=True).start()
self.corenlp.expect("done.", timeout=20) # Load pos tagger model (~5sec)
pbar.update(1)
self.corenlp.expect("done.", timeout=200) # Load NER-all classifier (~33sec)
pbar.update(2)
self.corenlp.expect("done.", timeout=600) # Load NER-muc classifier (~60sec)
pbar.update(3)
self.corenlp.expect("done.", timeout=600) # Load CoNLL classifier (~50sec)
pbar.update(4)
self.corenlp.expect("done.", timeout=200) # Loading PCFG (~3sec)
pbar.update(5)
self.corenlp.expect("Entering interactive shell.")
pbar.finish()
def _parse(self, text):
"""
This is the core interaction with the parser.
It returns a Python data-structure, while the parse()
function returns a JSON object
"""
# clean up anything leftover
while True:
try:
self.corenlp.read_nonblocking (4000, 0.3)
except pexpect.TIMEOUT:
break
self.corenlp.sendline(text)
# How much time should we give the parser to parse it?
# the idea here is that you increase the timeout as a
# function of the text's length.
# anything longer than 5 seconds requires that you also
# increase timeout=5 in jsonrpc.py
max_expected_time = min(40, 3 + len(text) / 20.0)
end_time = time.time() + max_expected_time
incoming = ""
while True:
# Time left, read more data
try:
incoming += self.corenlp.read_nonblocking(2000, 1)
if "\nNLP>" in incoming:
break
time.sleep(0.0001)
except pexpect.TIMEOUT:
if end_time - time.time() < 0:
logger.error("Error: Timeout with input '%s'" % (incoming))
return {'error': "timed out after %f seconds" % max_expected_time}
else:
continue
except pexpect.EOF:
break
if VERBOSE:
logger.debug("%s\n%s" % ('='*40, incoming))
try:
results = parse_parser_results(incoming)
except Exception, e:
if VERBOSE:
logger.debug(traceback.format_exc())
raise e
return results
def parse(self, text):
"""
This function takes a text string, sends it to the Stanford parser,
reads in the result, parses the results and returns a list
with one dictionary entry for each parsed sentence, in JSON format.
"""
response = self._parse(text)
logger.debug("Response: '%s'" % (response))
return json.dumps(response)
if __name__ == '__main__':
"""
The code below starts an JSONRPC server
"""
parser = optparse.OptionParser(usage="%prog [OPTIONS]")
parser.add_option('-p', '--port', default='8080',
help='Port to serve on (default: 8080)')
parser.add_option('-H', '--host', default='127.0.0.1',
help='Host to serve on (default: 127.0.0.1. Use 0.0.0.0 to make public)')
options, args = parser.parse_args()
server = jsonrpc.Server(jsonrpc.JsonRpc20(),
jsonrpc.TransportTcpIp(addr=(options.host, int(options.port))))
nlp = StanfordCoreNLP()
server.register_function(nlp.parse)
logger.info('Serving on http://%s:%s' % (options.host, options.port))
server.serve()