forked from google-deepmind/alphageometry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ar_test.py
204 lines (166 loc) · 6.62 KB
/
ar_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for ar.py."""
import unittest
from absl.testing import absltest
import ar
import graph as gh
import problem as pr
class ARTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.defs = pr.Definition.from_txt_file('defs.txt', to_dict=True)
cls.rules = pr.Theorem.from_txt_file('rules.txt', to_dict=True)
def test_update_groups(self):
"""Test for update_groups."""
groups1 = [{1, 2}, {3, 4, 5}, {6, 7}]
groups2 = [{2, 3, 8}, {9, 10, 11}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2, 3, 4, 5, 8}, {6, 7}],
[{1, 2, 3, 4, 5, 8}, {6, 7}, {9, 10, 11}],
],
)
self.assertEqual(links, [(2, 3), (3, 8), (9, 10), (10, 11)])
groups1 = [{1, 2}, {3, 4}, {5, 6}, {7, 8}]
groups2 = [{2, 3, 8, 9, 10}, {3, 6, 11}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2, 3, 4, 7, 8, 9, 10}, {5, 6}],
[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}],
],
)
self.assertEqual(links, [(2, 3), (3, 8), (8, 9), (9, 10), (3, 6), (6, 11)])
groups1 = []
groups2 = [{1, 2}, {3, 4}, {5, 6}, {2, 3}]
_, links, history = ar.update_groups(groups1, groups2)
self.assertEqual(
history,
[
[{1, 2}],
[{1, 2}, {3, 4}],
[{1, 2}, {3, 4}, {5, 6}],
[{1, 2, 3, 4}, {5, 6}],
],
)
self.assertEqual(links, [(1, 2), (3, 4), (5, 6), (2, 3)])
def test_generic_table_simple(self):
tb = ar.Table()
# If a-b = b-c & d-a = c-d
tb.add_eq4('a', 'b', 'b', 'c', 'fact1')
tb.add_eq4('d', 'a', 'c', 'd', 'fact2')
tb.add_eq4('x', 'y', 'z', 't', 'fact3') # distractor fact
# Then b=d, because {fact1, fact2} but not fact3.
result = list(tb.get_all_eqs_and_why())
self.assertIn(('b', 'd', ['fact1', 'fact2']), result)
def test_angle_table_inbisector_exbisector(self):
"""Test that AR can figure out bisector & ex-bisector are perpendicular."""
# Load the scenario that we have cd is bisector of acb and
# ce is the ex-bisector of acb.
p = pr.Problem.from_txt(
'a b c = triangle a b c; d = incenter d a b c; e = excenter e a b c ?'
' perp d c c e'
)
g, _ = gh.Graph.build_problem(p, ARTest.defs)
# Create an external angle table:
tb = ar.AngleTable('pi')
# Add bisector & ex-bisector facts into the table:
ca, cd, cb, ce = g.names2nodes(['d(ac)', 'd(cd)', 'd(bc)', 'd(ce)'])
tb.add_eqangle(ca, cd, cd, cb, 'fact1')
tb.add_eqangle(ce, ca, cb, ce, 'fact2')
# Add a distractor fact to make sure traceback does not include this fact
ab = g.names2nodes(['d(ab)'])[0]
tb.add_eqangle(ab, cb, cb, ca, 'fact3')
# Check for all new equalities
result = list(tb.get_all_eqs_and_why())
# halfpi is represented as a tuple (1, 2)
halfpi = (1, 2)
# check that cd-ce == halfpi and this is because fact1 & fact2, not fact3
self.assertCountEqual(
result,
[
(cd, ce, halfpi, ['fact1', 'fact2']),
(ce, cd, halfpi, ['fact1', 'fact2']),
],
)
def test_angle_table_equilateral_triangle(self):
"""Test that AR can figure out triangles with 3 equal angles => each is pi/3."""
# Load an equaliteral scenario
p = pr.Problem.from_txt('a b c = ieq_triangle ? cong a b a c')
g, _ = gh.Graph.build_problem(p, ARTest.defs)
# Add two eqangles facts because ieq_triangle only add congruent sides
a, b, c = g.names2nodes('abc')
g.add_eqangle([a, b, b, c, b, c, c, a], pr.EmptyDependency(0, None))
g.add_eqangle([b, c, c, a, c, a, a, b], pr.EmptyDependency(0, None))
# Create an external angle table:
tb = ar.AngleTable('pi')
# Add the fact that there are three equal angles
ab, bc, ca = g.names2nodes(['d(ab)', 'd(bc)', 'd(ac)'])
tb.add_eqangle(ab, bc, bc, ca, 'fact1')
tb.add_eqangle(bc, ca, ca, ab, 'fact2')
# Now check for all new equalities
result = list(tb.get_all_eqs_and_why())
result = [(x.name, y.name, z, t) for x, y, z, t in result]
# 1/3 pi is represented as a tuple angle_60
angle_60 = (1, 3)
angle_120 = (2, 3)
# check that angles constants are created and figured out:
self.assertCountEqual(
result,
[
('d(bc)', 'd(ac)', angle_120, ['fact1', 'fact2']),
('d(ab)', 'd(bc)', angle_120, ['fact1', 'fact2']),
('d(ac)', 'd(ab)', angle_120, ['fact1', 'fact2']),
('d(ac)', 'd(bc)', angle_60, ['fact1', 'fact2']),
('d(bc)', 'd(ab)', angle_60, ['fact1', 'fact2']),
('d(ab)', 'd(ac)', angle_60, ['fact1', 'fact2']),
],
)
def test_incenter_excenter_touchpoints(self):
"""Test that AR can figure out incenter/excenter touchpoints are equidistant to midpoint."""
p = pr.Problem.from_txt(
'a b c = triangle a b c; d1 d2 d3 d = incenter2 a b c; e1 e2 e3 e ='
' excenter2 a b c ? perp d c c e',
translate=False,
)
g, _ = gh.Graph.build_problem(p, ARTest.defs)
a, b, c, ab, bc, ca, d1, d2, d3, e1, e2, e3 = g.names2nodes(
['a', 'b', 'c', 'ab', 'bc', 'ac', 'd1', 'd2', 'd3', 'e1', 'e2', 'e3']
)
# Create an external distance table:
tb = ar.DistanceTable()
# DD can figure out the following facts,
# we manually add them to AR.
tb.add_cong(ab, ca, a, d3, a, d2, 'fact1')
tb.add_cong(ab, ca, a, e3, a, e2, 'fact2')
tb.add_cong(ca, bc, c, d2, c, d1, 'fact5')
tb.add_cong(ca, bc, c, e2, c, e1, 'fact6')
tb.add_cong(bc, ab, b, d1, b, d3, 'fact3')
tb.add_cong(bc, ab, b, e1, b, e3, 'fact4')
# Now we check whether tb has figured out that
# distance(b, d1) == distance(e1, c)
# linear comb exprssion of each variables:
b = tb.v2e['bc:b']
c = tb.v2e['bc:c']
d1 = tb.v2e['bc:d1']
e1 = tb.v2e['bc:e1']
self.assertEqual(ar.minus(d1, b), ar.minus(c, e1))
if __name__ == '__main__':
absltest.main()