This repository has been archived by the owner on Oct 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 42
n-best rescore with transformer lm #201
Open
glynpu
wants to merge
1
commit into
k2-fsa:master
Choose a base branch
from
glynpu:neural_net_lm_nbest_rescore
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2021 Xiaomi Corporation (Author: Guo Liyong) | ||
# Apache 2.0 | ||
|
||
import argparse | ||
import logging | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
import torch | ||
|
||
from espnet_utils.common import load_espnet_model_config | ||
from espnet_utils.common import rename_state_dict, combine_qkv | ||
from espnet_utils.frontened import Fbank | ||
from espnet_utils.frontened import GlobalMVN | ||
from espnet_utils.numericalizer import SpmNumericalizer | ||
from snowfall.models.conformer import Conformer | ||
|
||
_ESPNET_ENCODER_KEY_TO_SNOWFALL_KEY = [ | ||
('frontend.logmel.melmat', 'frontend.melmat'), | ||
('encoder.embed.out.0.weight', 'encoder.embed.out.weight'), | ||
('encoder.embed.out.0.bias', 'encoder.embed.out.bias'), | ||
(r'(encoder.encoders.)(\d+)(.self_attn.)linear_out([\s\S*])', | ||
r'\1\2\3out_proj\4'), | ||
(r'(encoder.encoders.)(\d+)', r'\1layers.\2'), | ||
(r'(encoder.encoders.layers.)(\d+)(.feed_forward.)(w_1)', | ||
r'\1\2.feed_forward.0'), | ||
(r'(encoder.encoders.layers.)(\d+)(.feed_forward.)(w_2)', | ||
r'\1\2.feed_forward.3'), | ||
(r'(encoder.encoders.layers.)(\d+)(.feed_forward_macaron.)(w_1)', | ||
r'\1\2.feed_forward_macaron.0'), | ||
(r'(encoder.encoders.layers.)(\d+)(.feed_forward_macaron.)(w_2)', | ||
r'\1\2.feed_forward_macaron.3'), | ||
(r'(encoder.embed.)([\s\S*])', r'encoder.encoder_embed.\2'), | ||
(r'(encoder.encoders.)([\s\S*])', r'encoder.encoder.\2'), | ||
(r'(ctc.ctc_lo.)([\s\S*])', r'encoder.encoder_output_layer.1.\2'), | ||
] | ||
|
||
|
||
class ESPnetASRModel(torch.nn.Module): | ||
|
||
def __init__( | ||
self, | ||
frontend: None, | ||
normalize: None, | ||
encoder: None, | ||
): | ||
|
||
super().__init__() | ||
self.frontend = frontend | ||
self.normalize = normalize | ||
self.encoder = encoder | ||
|
||
def encode( | ||
self, speech: torch.Tensor, | ||
speech_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | ||
|
||
feats, feats_lengths = self.frontend(speech, speech_lengths) | ||
|
||
feats, feats_lengths = self.normalize(feats, feats_lengths) | ||
|
||
feats = feats.permute(0, 2, 1) | ||
|
||
nnet_output, _, _ = self.encoder(feats) | ||
nnet_output = nnet_output.permute(2, 0, 1) | ||
return nnet_output | ||
|
||
@classmethod | ||
def build_model(cls, asr_train_config, asr_model_file, device): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
args = load_espnet_model_config(asr_train_config) | ||
# {'fs': '16k', 'hop_length': 256, 'n_fft': 512} | ||
frontend = Fbank(**args.frontend_conf) | ||
normalize = GlobalMVN(**args.normalize_conf) | ||
encoder = Conformer(num_features=80, | ||
num_classes=len(args.token_list), | ||
subsampling_factor=4, | ||
d_model=512, | ||
nhead=8, | ||
dim_feedforward=2048, | ||
num_encoder_layers=12, | ||
cnn_module_kernel=31, | ||
num_decoder_layers=0, | ||
is_espnet_structure=True) | ||
|
||
model = ESPnetASRModel( | ||
frontend=frontend, | ||
normalize=normalize, | ||
encoder=encoder, | ||
) | ||
|
||
state_dict = torch.load(asr_model_file, map_location=device) | ||
|
||
state_dict = { | ||
k: v for k, v in state_dict.items() if not k.startswith('decoder') | ||
} | ||
|
||
combine_qkv(state_dict, num_encoder_layers=11) | ||
rename_state_dict(rename_patterns=_ESPNET_ENCODER_KEY_TO_SNOWFALL_KEY, | ||
state_dict=state_dict) | ||
|
||
model.load_state_dict(state_dict, strict=False) | ||
model = model.to(torch.device(device)) | ||
|
||
numericalizer = SpmNumericalizer(tokenizer_type='spm', | ||
tokenizer_file=args.bpemodel, | ||
token_list=args.token_list, | ||
unk_symbol='<unk>') | ||
return model, numericalizer |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2021 Xiaomi Corporation (Author: Guo Liyong) | ||
# Apache 2.0 | ||
|
||
import argparse | ||
import re | ||
import yaml | ||
|
||
from typing import List, Tuple, Dict | ||
from pathlib import Path | ||
|
||
import torch | ||
|
||
|
||
def load_espnet_model_config(config_file): | ||
config_file = Path(config_file) | ||
with config_file.open("r", encoding="utf-8") as f: | ||
args = yaml.safe_load(f) | ||
return argparse.Namespace(**args) | ||
|
||
|
||
def rename_state_dict(rename_patterns: List[Tuple[str, str]], | ||
state_dict: Dict[str, torch.Tensor]): | ||
# Rename state dict to load espent model | ||
if rename_patterns is not None: | ||
for old_pattern, new_pattern in rename_patterns: | ||
old_keys = [ | ||
k for k in state_dict if re.match(old_pattern, k) is not None | ||
] | ||
for k in old_keys: | ||
v = state_dict.pop(k) | ||
new_k = re.sub(old_pattern, new_pattern, k) | ||
state_dict[new_k] = v | ||
|
||
|
||
def combine_qkv(state_dict: Dict[str, torch.Tensor], num_encoder_layers=11): | ||
for layer in range(num_encoder_layers + 1): | ||
q_w = state_dict[f'encoder.encoders.{layer}.self_attn.linear_q.weight'] | ||
k_w = state_dict[f'encoder.encoders.{layer}.self_attn.linear_k.weight'] | ||
v_w = state_dict[f'encoder.encoders.{layer}.self_attn.linear_v.weight'] | ||
q_b = state_dict[f'encoder.encoders.{layer}.self_attn.linear_q.bias'] | ||
k_b = state_dict[f'encoder.encoders.{layer}.self_attn.linear_k.bias'] | ||
v_b = state_dict[f'encoder.encoders.{layer}.self_attn.linear_v.bias'] | ||
|
||
for param_type in ['weight', 'bias']: | ||
for layer_type in ['q', 'k', 'v']: | ||
key_to_remove = f'encoder.encoders.{layer}.self_attn.linear_{layer_type}.{param_type}' | ||
state_dict.pop(key_to_remove) | ||
|
||
in_proj_weight = torch.cat([q_w, k_w, v_w], dim=0) | ||
in_proj_bias = torch.cat([q_b, k_b, v_b], dim=0) | ||
key_weight = f'encoder.encoders.{layer}.self_attn.in_proj.weight' | ||
state_dict[key_weight] = in_proj_weight | ||
key_bias = f'encoder.encoders.{layer}.self_attn.in_proj.bias' | ||
state_dict[key_bias] = in_proj_bias |
229 changes: 229 additions & 0 deletions
229
egs/librispeech/asr/simple_v1/espnet_utils/frontened.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2021 Xiaomi Corporation (Author: Guo Liyong) | ||
# Apache 2.0 | ||
|
||
import humanfriendly | ||
import librosa | ||
import numpy as np | ||
import torch | ||
|
||
from pathlib import Path | ||
from typeguard import check_argument_types | ||
from typing import Optional, Tuple, Union | ||
|
||
|
||
# Modified from: | ||
# https://github.com/espnet/espnet/blob/08feae5bb93fa8f6dcba66760c8617a4b5e39d70/espnet/nets/pytorch_backend/frontends/feature_transform.py#L135 | ||
class GlobalMVN(torch.nn.Module): | ||
"""Apply global mean and variance normalization | ||
|
||
TODO(kamo): Make this class portable somehow | ||
|
||
Args: | ||
stats_file: npy file | ||
norm_means: Apply mean normalization | ||
norm_vars: Apply var normalization | ||
eps: | ||
""" | ||
|
||
def __init__( | ||
self, | ||
stats_file: Union[Path, str], | ||
norm_means: bool = True, | ||
norm_vars: bool = True, | ||
eps: float = 1.0e-20, | ||
): | ||
assert check_argument_types() | ||
super().__init__() | ||
self.norm_means = norm_means | ||
self.norm_vars = norm_vars | ||
self.eps = eps | ||
stats_file = Path(stats_file) | ||
|
||
self.stats_file = stats_file | ||
stats = np.load(stats_file) | ||
if isinstance(stats, np.ndarray): | ||
# Kaldi like stats | ||
count = stats[0].flatten()[-1] | ||
mean = stats[0, :-1] / count | ||
var = stats[1, :-1] / count - mean * mean | ||
else: | ||
# New style: Npz file | ||
count = stats["count"] | ||
sum_v = stats["sum"] | ||
sum_square_v = stats["sum_square"] | ||
mean = sum_v / count | ||
var = sum_square_v / count - mean * mean | ||
std = np.sqrt(np.maximum(var, eps)) | ||
|
||
self.register_buffer("mean", torch.from_numpy(mean)) | ||
self.register_buffer("std", torch.from_numpy(std)) | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
ilens: torch.Tensor = None) -> Tuple[torch.Tensor, torch.Tensor]: | ||
"""Forward function | ||
|
||
Args: | ||
x: (B, L, ...) | ||
ilens: (B,) | ||
""" | ||
if ilens is None: | ||
ilens = x.new_full([x.size(0)], x.size(1)) | ||
norm_means = self.norm_means | ||
norm_vars = self.norm_vars | ||
self.mean = self.mean.to(x.device, x.dtype) | ||
self.std = self.std.to(x.device, x.dtype) | ||
|
||
# feat: (B, T, D) | ||
if norm_means: | ||
if x.requires_grad: | ||
x = x - self.mean | ||
else: | ||
x -= self.mean | ||
|
||
if norm_vars: | ||
x /= self.std | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
The original implementation |
||
|
||
return x, ilens | ||
|
||
|
||
# Modified from: | ||
# https://github.com/espnet/espnet/blob/08feae5bb93fa8f6dcba66760c8617a4b5e39d70/espnet2/layers/stft.py#L14:7 | ||
class Stft(torch.nn.Module): | ||
|
||
def __init__( | ||
self, | ||
n_fft: int = 512, | ||
win_length: int = None, | ||
hop_length: int = 128, | ||
window: Optional[str] = "hann", | ||
center: bool = True, | ||
normalized: bool = False, | ||
onesided: bool = True, | ||
): | ||
super().__init__() | ||
self.n_fft = n_fft | ||
if win_length is None: | ||
self.win_length = n_fft | ||
else: | ||
self.win_length = win_length | ||
self.hop_length = hop_length | ||
self.center = center | ||
self.normalized = normalized | ||
self.onesided = onesided | ||
if window is not None and not hasattr(torch, f"{window}_window"): | ||
raise ValueError(f"{window} window is not implemented") | ||
self.window = window | ||
|
||
def forward( | ||
self, | ||
input: torch.Tensor, | ||
ilens: torch.Tensor = None | ||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | ||
"""STFT forward function. | ||
|
||
Args: | ||
input: (Batch, Nsamples) or (Batch, Nsample, Channels) | ||
ilens: (Batch) | ||
Returns: | ||
output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) | ||
|
||
""" | ||
bs = input.size(0) | ||
|
||
if self.window is not None: | ||
window_func = getattr(torch, f"{self.window}_window") | ||
window = window_func(self.win_length, | ||
dtype=input.dtype, | ||
device=input.device) | ||
else: | ||
window = None | ||
output = torch.stft( | ||
input, | ||
n_fft=self.n_fft, | ||
win_length=self.win_length, | ||
hop_length=self.hop_length, | ||
center=self.center, | ||
window=window, | ||
normalized=self.normalized, | ||
onesided=self.onesided, | ||
) | ||
output = output.transpose(1, 2) | ||
|
||
if self.center: | ||
pad = self.win_length // 2 | ||
ilens = ilens + 2 * pad | ||
|
||
olens = (ilens - self.win_length) // self.hop_length + 1 | ||
|
||
return output, olens | ||
|
||
|
||
# Modified from: | ||
# https://github.com/espnet/espnet/blob/08feae5bb93fa8f6dcba66760c8617a4b5e39d70/espnet2/asr/frontend/default.py#L19 | ||
class Fbank(torch.nn.Module): | ||
""" | ||
|
||
Stft -> Power-spec -> Mel-Fbank | ||
""" | ||
|
||
def __init__( | ||
self, | ||
fs: Union[int, str] = 16000, | ||
n_fft: int = 512, | ||
win_length: int = None, | ||
hop_length: int = 128, | ||
window: Optional[str] = "hann", | ||
center: bool = True, | ||
normalized: bool = False, | ||
onesided: bool = True, | ||
n_mels: int = 80, | ||
fmin: int = None, | ||
fmax: int = None, | ||
): | ||
super().__init__() | ||
if isinstance(fs, str): | ||
fs = humanfriendly.parse_size(fs) | ||
|
||
self.stft = Stft( | ||
n_fft=n_fft, | ||
win_length=win_length, | ||
hop_length=hop_length, | ||
center=center, | ||
window=window, | ||
normalized=normalized, | ||
onesided=onesided, | ||
) | ||
|
||
fmin = 0 if fmin is None else fmin | ||
fmax = fs / 2 if fmax is None else fmax | ||
_mel_options = dict( | ||
sr=fs, | ||
n_fft=n_fft, | ||
n_mels=n_mels, | ||
fmin=fmin, | ||
fmax=fmax, | ||
) | ||
|
||
# _mel_options = {'sr': 16000, 'n_fft': 512, 'n_mels': 80, 'fmin': 0, 'fmax': 8000.0, 'htk': False} | ||
melmat = librosa.filters.mel(**_mel_options) | ||
|
||
self.register_buffer("melmat", torch.from_numpy(melmat.T).float()) | ||
|
||
def forward( | ||
self, input: torch.Tensor, | ||
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | ||
input_stft, feats_lens = self.stft(input, input_lengths) | ||
input_stft = torch.complex(input_stft[..., 0], input_stft[..., 1]) | ||
|
||
input_power = input_stft.real**2 + input_stft.imag**2 | ||
|
||
mel_feat = torch.matmul(input_power, self.melmat) | ||
mel_feat = torch.clamp(mel_feat, min=1e-10) | ||
|
||
input_feats = mel_feat.log() | ||
|
||
return input_feats, feats_lens |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Would you mind adding doc describing the shape of various tensors?