diff --git a/README.md b/README.md
index 148fa7fd0d..37d89481b2 100644
--- a/README.md
+++ b/README.md
@@ -1,24 +1,48 @@
# pydelfi
-**NOTE:** currently only works with tensorflow <= 1.15; tensorflow 2 update coming soon.
-
**Density Estimation Likelihood-Free Inference** with neural density estimators and adaptive acquisition of simulations. The implemented methods are described in detail in [Alsing, Charnock, Feeney and Wandelt 2019](https://arxiv.org/abs/1903.00007), and are based closely on [Papamakarios, Sterratt and Murray 2018](https://arxiv.org/pdf/1805.07226.pdf), [Lueckmann et al 2018](https://arxiv.org/abs/1805.09294) and [Alsing, Wandelt and Feeney, 2018](https://academic.oup.com/mnras/article-abstract/477/3/2874/4956055?redirectedFrom=fulltext). Please cite these papers if you use this code!
**Installation:**
-The code is in python3 and has the following dependencies:
+The code is in python3. There is a Tensorflow 1 (most stable, see below) and Tensorflow 2 version that can be installed as follows:
+
+**Tensorflow 1 (stable)**
+
+This can be found on the master branch and has the following dependencies:
[tensorflow](https://www.tensorflow.org) (<=1.15)
[getdist](http://getdist.readthedocs.io/en/latest/)
-[emcee](http://dfm.io/emcee/current/)
+[emcee](http://dfm.io/emcee/current/) (>=3.0.2)
[tqdm](https://github.com/tqdm/tqdm)
[mpi4py](https://mpi4py.readthedocs.io/en/stable/) (if MPI is required)
You can install the requirements and this package with,
+
```
+pip install tensorflow==1.15
pip install git+https://github.com/justinalsing/pydelfi.git
```
+(`tensorflow-gpu==1.15` for GPU acceleration instead of `tensorflow==1.15`)
+
or alternatively, pip install the requirements and then clone the repo and run `python setup.py install`
+**Tensorflow 2**
+
+The Tensorflow 2 version can be found on the `tf2-tom` branch and can be installed as follows. We reccommend you do the install inside a virtual environment to keep version conflicts under control, ie.,
+
+```
+mkdir ~/envs
+virtualenv ~/envs/pydelfi
+source ~/envs/pydelfi/bin/activate
+```
+
+Followed by a pip install of pydelfi:
+
+```
+pip install git+https://github.com/justinalsing/pydelfi.git@tf2-tom
+```
+
+Note: the Mixture Density Networks (MDN) in the tf2 version are currently not performing as well as in the tf1 version (but the Masked Autoregressive Flows are fine). We are getting ot the bottom of this, and also working on expanding the suite of conditional density estimators in a coming update. Watch this space.
+
**Documentation and tutorials:**
Once everything is installed, try out either `cosmic_shear.ipynb` or `jla_sne.ipynb` as example templates for how to use the code; plugging in your own simulator and letting pydelfi do it's thing.
diff --git a/examples/cosmic_shear.ipynb b/examples/cosmic_shear.ipynb
index fb920fe798..f10076768c 100644
--- a/examples/cosmic_shear.ipynb
+++ b/examples/cosmic_shear.ipynb
@@ -6,6 +6,8 @@
"metadata": {},
"outputs": [],
"source": [
+ "import sys\n",
+ "import tensorflow as tf\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import getdist\n",
@@ -13,12 +15,19 @@
"import pydelfi.priors as priors\n",
"import pydelfi.ndes as ndes\n",
"import pydelfi.delfi as delfi\n",
- "import tensorflow as tf\n",
+ "import pydelfi.score as score\n",
"import simulators.cosmic_shear.cosmic_shear as cosmic_shear\n",
"import pickle\n",
- "import pydelfi.score as score\n",
- "tf.logging.set_verbosity(tf.logging.ERROR)\n",
- "%matplotlib inline"
+ "import tensorflow_probability as tfp\n",
+ "tfd = tfp.distributions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Set up the simulator\n",
+ "This must have the signature `simulator(parameters, seed, args, batch)` -> `np.array([batch, ndata])`"
]
},
{
@@ -27,37 +36,45 @@
"metadata": {},
"outputs": [],
"source": [
- "### SET UP THE SIMULATOR ###\n",
- "\n",
- "# Set up the tomography simulations\n",
"CosmicShearSimulator = cosmic_shear.TomographicCosmicShear(pz = pickle.load(open('simulators/cosmic_shear/pz_5bin.pkl', 'rb')),\n",
" lmin = 10, lmax = 1000, n_ell_bins = 5, \n",
" sigma_e = 0.3, nbar = 30, Area = 15000)\n",
"\n",
- "# Simulator function: This must be of the form simulator(theta, seed, args) -> simulated data vector\n",
"def simulator(theta, seed, simulator_args, batch=1):\n",
" return CosmicShearSimulator.simulate(theta, seed)\n",
"\n",
- "# Simulator arguments\n",
"simulator_args = None"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Set up the prior"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
- "### SET UP THE PRIOR ###\n",
+ "lower = np.array([0, 0.4, 0, 0.4, 0.7]).astype('float32')\n",
+ "upper = np.array([1, 1.2, 0.1, 1.0, 1.3]).astype('float32')\n",
+ "prior_mean = np.array([0.3, 0.8, 0.05, 0.70, 0.96]).astype('float32')\n",
+ "prior_covariance = (np.eye(5)*np.array([0.1, 0.1, 0.05, 0.3, 0.3])**2).astype('float32')\n",
+ "prior_stddev = np.sqrt(np.diag(prior_covariance))\n",
"\n",
- "# Define the priors parameters\n",
- "lower = np.array([0, 0.4, 0, 0.4, 0.7])\n",
- "upper = np.array([1, 1.2, 0.1, 1.0, 1.3])\n",
- "prior_mean = np.array([0.3, 0.8, 0.05, 0.70, 0.96])\n",
- "prior_covariance = np.eye(5)*np.array([0.1, 0.1, 0.05, 0.3, 0.3])**2\n",
- "\n",
- "# Prior\n",
- "prior = priors.TruncatedGaussian(prior_mean, prior_covariance, lower, upper)"
+ "prior = tfd.Blockwise([tfd.TruncatedNormal(loc=prior_mean[i], scale=prior_stddev[i], low=lower[i], high=upper[i]) for i in range(5)])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Set up the compressor\n",
+ "Must have the signature `compressor(data, args)` -> `np.array([n_summaries])`
\n",
+ "In this case we are going to do Wishart score compression."
]
},
{
@@ -66,8 +83,6 @@
"metadata": {},
"outputs": [],
"source": [
- "### SET UP THE COMPRESSOR ###\n",
- "\n",
"# Fiducial parameters\n",
"theta_fiducial = np.array([0.3, 0.8, 0.05, 0.70, 0.96])\n",
"\n",
@@ -94,39 +109,85 @@
"compressor_args = None"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Generate mock data vector"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "### GENERATE MOCK DATA VECTOR ###\n",
- "\n",
"seed = 0\n",
"data = simulator(theta_fiducial, seed, simulator_args)\n",
"compressed_data = compressor(data, compressor_args)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create ensemble of NDEs"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "WARNING:tensorflow:From /obs/njeffrey/envs/delfi2env/lib/python3.7/site-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:167: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Do not pass `graph_parents`. They will no longer be used.\n",
+ "WARNING:tensorflow:From /obs/njeffrey/envs/delfi2env/lib/python3.7/site-packages/tensorflow_probability/python/distributions/distribution.py:334: calling TransformedDistribution.__init__ (from tensorflow_probability.python.distributions.transformed_distribution) with batch_shape is deprecated and will be removed after 2020-06-01.\n",
+ "Instructions for updating:\n",
+ "`batch_shape` and `event_shape` args are deprecated. Please use `tfd.Sample`, `tfd.Independent`, and broadcasted parameters of the base distribution instead. For example, replace `tfd.TransformedDistribution(tfd.Normal(0., 1.), tfb.Exp(), batch_shape=[2, 3], event_shape=[4])` with `tfd.TransformedDistrbution(tfd.Sample(tfd.Normal(tf.zeros([2, 3]), 1.),sample_shape=[4]), tfb.Exp())` or `tfd.TransformedDistribution(tfd.Independent(tfd.Normal(tf.zeros([2, 3, 4]), 1.), reinterpreted_batch_ndims=1), tfb.Exp())`.\n",
+ "WARNING:tensorflow:From /obs/njeffrey/envs/delfi2env/lib/python3.7/site-packages/tensorflow_probability/python/distributions/distribution.py:334: calling TransformedDistribution.__init__ (from tensorflow_probability.python.distributions.transformed_distribution) with event_shape is deprecated and will be removed after 2020-06-01.\n",
+ "Instructions for updating:\n",
+ "`batch_shape` and `event_shape` args are deprecated. Please use `tfd.Sample`, `tfd.Independent`, and broadcasted parameters of the base distribution instead. For example, replace `tfd.TransformedDistribution(tfd.Normal(0., 1.), tfb.Exp(), batch_shape=[2, 3], event_shape=[4])` with `tfd.TransformedDistrbution(tfd.Sample(tfd.Normal(tf.zeros([2, 3]), 1.),sample_shape=[4]), tfb.Exp())` or `tfd.TransformedDistribution(tfd.Independent(tfd.Normal(tf.zeros([2, 3, 4]), 1.), reinterpreted_batch_ndims=1), tfb.Exp())`.\n"
+ ]
+ }
+ ],
"source": [
- "# Create an ensemble of NDEs\n",
- "NDEs = [ndes.ConditionalMaskedAutoregressiveFlow(n_parameters=5, n_data=5, n_hiddens=[50,50], n_mades=5, act_fun=tf.tanh, index=0),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=1, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=1),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=2, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=2),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=3, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=3),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=4, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=4),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=5, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=5)]\n",
+ "NDEs = [ndes.ConditionalMaskedAutoregressiveFlow(\n",
+ " n_parameters=5,\n",
+ " n_data=5,\n",
+ " n_mades=5,\n",
+ " n_hidden=[30,30], \n",
+ " activation=tf.keras.layers.LeakyReLU(0.01),\n",
+ " kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None),\n",
+ " all_layers=True)]\n",
+ "\n",
+ "NDEs += [ndes.MixtureDensityNetwork(\n",
+ " n_parameters=5,\n",
+ " n_data=5, \n",
+ " n_components=i+1,\n",
+ " n_hidden=[30], \n",
+ " activation=tf.keras.layers.LeakyReLU(0.01))\n",
+ " for i in range(5)]\n",
"\n",
- "# Create the DELFI object\n",
- "DelfiEnsemble = delfi.Delfi(compressed_data, prior, NDEs, Finv=Finv, theta_fiducial=theta_fiducial, \n",
- " param_limits = [lower, upper],\n",
- " param_names = ['\\Omega_m', 'S_8', '\\Omega_b', 'h', 'n_s'], \n",
- " results_dir = \"simulators/cosmic_shear/results/\",\n",
- " input_normalization='fisher')"
+ "NDEs += [ndes.SinhArcSinhMADE(\n",
+ " n_parameters=5,\n",
+ " n_data=5,\n",
+ " n_hidden=[64],\n",
+ " activation=tf.tanh,\n",
+ " kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None),\n",
+ " bias_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None)\n",
+ " )]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Create DELFI object"
]
},
{
@@ -135,8 +196,42 @@
"metadata": {},
"outputs": [],
"source": [
- "# Do the Fisher pre-training\n",
- "DelfiEnsemble.fisher_pretraining()"
+ "DelfiEnsemble = delfi.Delfi(compressed_data, prior, NDEs, \n",
+ " Finv=Finv, \n",
+ " theta_fiducial=theta_fiducial,\n",
+ " param_limits = [lower, upper],\n",
+ " param_names=['\\Omega_m', 'S_8', '\\Omega_b', 'h', 'n_s'], \n",
+ " results_dir=\"simulators/cosmic_shear/results\",\n",
+ " filename=\"cosmic_shear\",\n",
+ " optimiser=tf.keras.optimizers.Adam(lr=1e-4),\n",
+ " optimiser_arguments=None,\n",
+ " dtype=tf.float32,\n",
+ " posterior_chain_length=200,\n",
+ " nwalkers=500,\n",
+ " input_normalization=\"fisher\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Fisher pre-training to initialize NDEs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# DelfiEnsemble.fisher_pretraining(n_batch=5000, epochs=1000, patience=20, plot=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Sequential Neural Likelihood"
]
},
{
@@ -151,22 +246,15 @@
"n_populations = 39\n",
"\n",
"# Do the SNL training\n",
- "DelfiEnsemble.sequential_training(simulator, compressor, n_initial, n_batch, n_populations, patience=10, save_intermediate_posteriors=True)"
+ "DelfiEnsemble.sequential_training(simulator, compressor, n_initial, n_batch, n_populations, patience=10, plot=True, save_intermediate_posteriors=True)"
]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "delfi2env",
"language": "python",
- "name": "python3"
+ "name": "delfi2env"
},
"language_info": {
"codemirror_mode": {
@@ -178,7 +266,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5"
+ "version": "3.7.3"
}
},
"nbformat": 4,
diff --git a/examples/cosmic_shear_prerun_sims.ipynb b/examples/cosmic_shear_prerun_sims.ipynb
index 95462cd77e..cde2503369 100644
--- a/examples/cosmic_shear_prerun_sims.ipynb
+++ b/examples/cosmic_shear_prerun_sims.ipynb
@@ -13,18 +13,21 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
+ "import sys\n",
+ "sys.path.append('/Users/justinalsing/Dropbox/science/pydelfi-tf2/pydelfi/pydelfi')\n",
+ "\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
- "import pydelfi.priors as priors\n",
- "import pydelfi.ndes as ndes\n",
- "import pydelfi.delfi as delfi\n",
+ "import priors as priors\n",
+ "import ndes as ndes\n",
+ "import delfi as delfi\n",
"import tensorflow as tf\n",
- "tf.logging.set_verbosity(tf.logging.ERROR)\n",
- "%matplotlib inline"
+ "import tensorflow_probability as tfp\n",
+ "tfd = tfp.distributions"
]
},
{
@@ -40,13 +43,13 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"lower = np.array([0, 0.4, 0, 0.4, 0.7])\n",
"upper = np.array([1, 1.2, 0.1, 1.0, 1.3])\n",
- "prior = priors.Uniform(lower, upper)"
+ "prior = tfd.Blockwise([tfd.Uniform(low=lower[i], high=upper[i]) for i in range(5)])"
]
},
{
@@ -65,7 +68,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -93,17 +96,35 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
- "NDEs = [ndes.ConditionalMaskedAutoregressiveFlow(n_parameters=5, n_data=5, n_hiddens=[50,50], n_mades=5, act_fun=tf.tanh, index=0),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=1, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=1),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=2, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=2),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=3, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=3),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=4, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=4),\n",
- " ndes.MixtureDensityNetwork(n_parameters=5, n_data=5, n_components=5, n_hidden=[30,30], activations=[tf.tanh, tf.tanh], index=5)]\n",
- " "
+ "NDEs = [ndes.ConditionalMaskedAutoregressiveFlow(\n",
+ " n_parameters=5,\n",
+ " n_data=5,\n",
+ " n_mades=5,\n",
+ " n_hidden=[30,30], \n",
+ " activation=tf.keras.layers.LeakyReLU(0.01),\n",
+ " kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None),\n",
+ " all_layers=True)]\n",
+ "\n",
+ "NDEs += [ndes.MixtureDensityNetwork(\n",
+ " n_parameters=5,\n",
+ " n_data=5, \n",
+ " n_components=i+1,\n",
+ " n_hidden=[30], \n",
+ " activation=tf.keras.layers.LeakyReLU(0.01))\n",
+ " for i in range(5)]\n",
+ "\n",
+ "NDEs += [ndes.SinhArcSinhMADE(\n",
+ " n_parameters=5,\n",
+ " n_data=5,\n",
+ " n_hidden=[64],\n",
+ " activation=tf.tanh,\n",
+ " kernel_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None),\n",
+ " bias_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=1e-5, seed=None)\n",
+ " )]"
]
},
{
@@ -119,16 +140,22 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"DelfiEnsemble = delfi.Delfi(compressed_data, prior, NDEs, \n",
- " Finv = Finv, \n",
- " theta_fiducial = theta_fiducial, \n",
+ " Finv=Finv, \n",
+ " theta_fiducial=theta_fiducial,\n",
" param_limits = [lower, upper],\n",
- " param_names = ['\\Omega_m', 'S_8', '\\Omega_b', 'h', 'n_s'], \n",
- " results_dir = \"simulators/cosmic_shear/results_prerun/\",\n",
+ " param_names=['\\Omega_m', 'S_8', '\\Omega_b', 'h', 'n_s'], \n",
+ " results_dir=\"simulators/cosmic_shear/results\",\n",
+ " filename=\"cosmic_shear\",\n",
+ " optimiser=tf.keras.optimizers.Adam(lr=1e-4),\n",
+ " optimiser_arguments=None,\n",
+ " dtype=tf.float32,\n",
+ " posterior_chain_length=200,\n",
+ " nwalkers=500,\n",
" input_normalization=\"fisher\")"
]
},
@@ -141,7 +168,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -161,7 +188,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 13,
"metadata": {
"scrolled": true
},
@@ -169,111 +196,37 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1c72c67e70074f2993bc72ba749641a4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c3c5cdf85dc3456aaa10d2107e6e1451",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a753a535fd6b44bfa221041012f01962",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "37edf6bc26894aff9543aff9221017ce",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "399f328087304188b37750acd9924966",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7475a662a88c4f1592e01b8c563946fc",
+ "model_id": "a973d13d0325400bb3f6064e713a4f43",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
- "HBox(children=(IntProgress(value=0, description='Training', max=300, style=ProgressStyle(description_width='in…"
+ "HBox(children=(FloatProgress(value=0.0, description='Training', max=1000.0, style=ProgressStyle(description_wi…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Sampling approximate posterior...\n",
- "Done.\n",
- "Removed no burn in\n"
+ "ename": "KeyboardInterrupt",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mDelfiEnsemble\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfisher_pretraining\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_batch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m~/Dropbox/science/pydelfi-tf2/pydelfi/pydelfi/delfi.py\u001b[0m in \u001b[0;36mfisher_pretraining\u001b[0;34m(self, n_batch, plot, batch_size, validation_split, epochs, patience, mode)\u001b[0m\n\u001b[1;32m 581\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"regression\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 582\u001b[0m \u001b[0;31m# Train the networks on these initial simulations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 583\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_ndes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtraining_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfisher_x_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfisher_y_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_2d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfisher_logpdf_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalidation_split\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatience\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpatience\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'regression'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 584\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"samples\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 585\u001b[0m \u001b[0;31m# Train the networks on these initial simulations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/Dropbox/science/pydelfi-tf2/pydelfi/pydelfi/delfi.py\u001b[0m in \u001b[0;36mtrain_ndes\u001b[0;34m(self, training_data, batch_size, validation_split, epochs, patience, mode)\u001b[0m\n\u001b[1;32m 495\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mn\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_ndes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 496\u001b[0m \u001b[0;31m# Train the NDE\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 497\u001b[0;31m \u001b[0mval_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainer\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtraining_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mepochs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_batch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprogress_bar\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogress_bar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatience\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpatience\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgraph_restore_filename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 498\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;31m# Save the training and validation losses\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/Dropbox/science/pydelfi-tf2/pydelfi/pydelfi/train.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, train_data, f_val, epochs, n_batch, patience, file_name, progress_bar, mode)\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;31m# Retrieve the gradients of the trainable variables wrt the loss and\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[0;31m# pass to optimizer.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 107\u001b[0;31m \u001b[0mgrads\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtape\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgradient\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainable_variables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 108\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_gradients\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrads\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrainable_variables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/site-packages/tensorflow_core/python/eager/backprop.py\u001b[0m in \u001b[0;36mgradient\u001b[0;34m(self, target, sources, output_gradients, unconnected_gradients)\u001b[0m\n\u001b[1;32m 1027\u001b[0m \u001b[0moutput_gradients\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_gradients\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1028\u001b[0m \u001b[0msources_raw\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mflat_sources_raw\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1029\u001b[0;31m unconnected_gradients=unconnected_gradients)\n\u001b[0m\u001b[1;32m 1030\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1031\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_persistent\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/site-packages/tensorflow_core/python/eager/imperative_grad.py\u001b[0m in \u001b[0;36mimperative_grad\u001b[0;34m(tape, target, sources, output_gradients, sources_raw, unconnected_gradients)\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0moutput_gradients\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0msources_raw\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 77\u001b[0;31m compat.as_str(unconnected_gradients.value))\n\u001b[0m",
+ "\u001b[0;32m/usr/local/lib/python3.7/site-packages/tensorflow_core/python/eager/backprop.py\u001b[0m in \u001b[0;36m_gradient_function\u001b[0;34m(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads, skip_input_indices)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 119\u001b[0;31m def _gradient_function(op_name, attr_tuple, num_inputs, inputs, outputs,\n\u001b[0m\u001b[1;32m 120\u001b[0m out_grads, skip_input_indices):\n\u001b[1;32m 121\u001b[0m \"\"\"Calls the gradient function of the op.\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAANYCAYAAADZn0yoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XmYXFWd//HPubX0mr1D9qSzA2GnWRNIBMIOKqPgqCg6CCOOG44ri7IIIowOOjoYUVHEGUF+jgbCFpaEHRIIW4CQ7ixkT2fv7qqu5Z7fH9WFTdNJV3VX9b236v16nn6gq27fOlVdNPdT53y/x1hrBQAAAADoO8frAQAAAABAqSBgAQAAAECBELAAAAAAoEAIWAAAAABQIAQsAAAAACiQsNcDCJq6ujpbX1/v9TBQBpYuXdpsrR3u9TgAAACQOwJWnurr67VkyRKvh4EyYIxZ4/UYAAAAkB+WCAIAAABAgRCwAAAAAKBACFgAAAAAUCAELAAAAAAoEAIWAAAAABQIAQsAAAAACoSABQAAAAAFQsACAAAAgAIhYAEAAABAgRCwAAAAAKBACFgAAAAAUCAELAAAAAAokLDXA0Bp29ri6ubH4lrZnJa1UsO4sL58YqUGVhqvhwYAAAAUHAELRTP/9YTmPduua06v0hHjwrLW6rF3Ujr/jhbd+tFqTR8R8nqIAAAAQEERsFAU9yxL6JG3k/rr52sVDmVmq4wxOnlaRIeMDumzd7Xqlg9X68CRhCwAAACUDmqwUHCvbUjpnmUJ3fbx6vfCVWfDax3d+ekaXf5/bdoTtx6MEAAAACgOAhYKKpm2+tbfY7rt49VynL3XWQ2rcfSD06v0jb+19ePoAAAAgOIiYKGgfvNcuy48KqqhNT2/tY6tD2totdHixmQ/jAwAAAAoPgIWCmZP3Gr+G0l94vBozj/zvblVuuWxuKxlqSAAAACCj4CFgvmPx2O6fE7lPpcGdjWw0uiYCWE9sTJVxJEBAAAA/YOAhYLY0ebqtY1pnTwtkvfPfmlWhf7ryXgRRgUAAAD0LwIWCuJXz7TrslmVvfrZwdWOJg0Ladk6ZrEAAAAQbAQs9FkiZfVkU0onTe39tmqXHF+h259rL+CoAAAAgP5HwEKf3b0soQsOi8qY3Guvupo6PKQNu121ttPsAgAAAMFFwEKf/WVZQhcckXvnwL254LCo7lmWKMCIAAAAAG8QsNAnK7akNWGoo4pw72evsj5ySFT/9xoBCwAAAMFFwEKf/O75dn3+mIqCnKsibDRmsKPV29IFOR8AAADQ3whY6LVU2uq1jWkdOqb3zS26+vihUf3lFWaxAAAAEEwELPTaI28nder0/Pe92pcTJoe1uJF27QAAAAgmAhZ67d5Xkzr/8L43t+gs5BiNH+JoFcsEAQAAEEAELPRKImW1vc3VyIGFfwt9nG6CAAAACCgCFnpl4YqkTplW2OWBWbMmhfVUE8sEAQAAEDwELPTKva8kdN4hhV0emBVyjEYOdLRhl1uU8wMAAADFQsBC3hIpqx0xW5TlgVlnz4jovjdYJggAAIBgIWAhb4+9k9RJU4uzPDDrlGkRLVzBMkEAAAAECwELebvvjaTOmVHcgFUdNZKktoQt6uMAAAAAhUTAQl6stVq7w9WEoaGiP9bJU8N6dEWy6I8DAAAAFAoBC3l5Y1NaM0YWP1xJ0tkzolqwnIAFAACA4CBgIS/3v5HU2UVeHpg1ZrCjDbvpJAgAAIDgIGAhL8+uTunY+nC/Pd7EoY6amtP99ngAAABAXxCwkLNtra4GVxmFHNNvjzl3ekSPvM0yQQAAAAQDAQs5e/DNpM44oH+WB2bNnhLRokbatQMAACAYCFjI2YNvJXXa/v0bsGorjOIpq7RLu3YAAAD4HwELOUm7Vi3tVoOr+/8tc+TYsJa+Sx0WAAAA/I+AhZy8tC6tI8f1X3OLzqjDAgAAQFAQsJCThW8ndcq0/l0emHXkuJCWrqMOCwAAAP5HwEJOlrybUsO4/tlguKuQY1QRMoolqMMCAACAvxGw0KNYwirsGIVD/deevatjJoT13BpmsQAAAOBvBCz06JnVKR0/0Zv6q6w5U8JatJI6LAAAAPgbAQs9enRFUqdM8zZgHTw6pNc20kkQAAAA/kbAQo+Wb0rrwJHe1F9lhRyjsGPUnqIOCwAAAP5FwMI+7WxzNbDSyBjv6q+yjp4Q0gvUYQEAAMDHCFjYp8VNKc2e4k179q5mT45oUSMBCwAAAP5FwMI+LW5MafZkb+uvsg4bE9LL7IcFAAAAHyNgYZ9Wbk1rcp0/3ibhkJFjpAR1WAAAAPApf1w5w5da2q1qKvxRf5XVMC6sJe8yiwUAAAB/ImBhr55dndJx9f5YHpg1e0pEi1YSsAAAAOBPBCzs1ZONSZ3ok/qrrCPHhbSUOiwAAAD4FAELe/XaxrQO8nj/q64iISNrpVSaOiwAAAD4DwEL3WpPWUVCRo7jn/qrrCPGhvXSurTXwwAAAAA+gICFbi1Zm9JR4/01e5U1e0pYixqTXg8DAAAA+AACFrr1ZFNKJ0zyxwbDXR01PqwX1zKDBQAAAP8hYKFbS99N6Yix/pzBqggbJdNWaZc6LAAAAPgLAQsfkHatXCtFw/6rv8o6ZHRIr29kFgsAAAD+QsDCB7y6Ia1DRvurPXtXJ06OaHEj7doBAADgLwQsfMCTjSmdMMnfAevYCWE9u5qABQAAAH8hYOEDnl2d0rH1/g5YNRVGsaSVtdRhAQAAwD8IWHgfa61iSavqqH/rr7Km7xfS21tcr4cBAAAAvIeAhfdZscXV9P382T2wqxMnh7WY/bAAAADgIwQsvM/ipqROmOzv5YFZMyeG9VQTdVgAAADwDwIW3ufpppRmTgxGwBpU5Wh3nDosAAAA+AcBC++zM2Y1pDo4b4uJwxyt3k4dFgAAAPwhOFfSKLq1O9IaNyRYbwn2wwIAAICfBOtqGkUVhP2vupo1KawnqcMCAACATxCw8J4nm1I6YVLE62HkZXito+YWlggCAADAHwhYeM+m3a5GDQreW2LUQEcbdhGyAAAA4L3gXU2jKLa2uKqrDebbgf2wAAAA4BfBvKJGwT3VlNKsgLRn74pGFwAAAPALAhYkSU82JnViQDYY7mrMYJYIAgAAwB8IWJAkNW1zNXFYcN8Ow2oMzS4AAADgueBeUaNg9sStaiuMjDFeD6XXTpgUoV07AAAAPEfAgp5ZldTxAa2/yqLRBQAAAPyAgAU92ZQKbP1V1sRhjlZtY4kgAAAAvEXAgt7YlNaBI0JeD6NPjDEaWGm0K0bIAgAAgHcIWGUunrSKhowcJ7j1V1kzJ4b1zCrqsAAAAOAdAlaZe3FtSkdPCPbsVdaJkyNaxH5YAAAA8BABq8w92ZTSCZMiXg+jIPYf4eitzWmvhwEAAIAyRsAqcy+tS+nwsaUxg2WMUVXEqC1hvR4KAAAAyhQBq4yl0lbWSpFQ8Ouvso6rD+u51SwTBAAAgDcIWGXslQ1pHTYm2O3Zu2I/LAAAAHiJgFXGnmxM6YRJpRWwDh4d0isbqMMCAACANwhYZez5NSkdM6G0AlbIMQo7UnuKOiwAAAD0PwJWmbLWKp6yqoqWTv1V1tETwlqyljosAAAA9D8CVplavimtA0aURvfArk6cFNFi9sMCAACABwhYZeqJlSnNmVIa+191dcS4kJauI2ABAACg/xGwytTTq1KaObG06q+yIiEj12ba0AMAAAD9iYBVhqy1aktY1VSUXv1V1uFjwlq2nm6CAAAA6F8ErDK0fFNaM0aVZv1V1uwp7IcFAACA/kfAKkOlXH+VdfT4sJ5fwwwWAAAA+hcBqww9vSql4+tLs/4qqzJilHQtdVgAAADoVwSsMuO6VrFkaddfZR0zPqwX2A8LAAAA/YiAVWaWb05rxsjSrr/Kmjs9ooffog4LAAAA/YeAVWbKof4q67AxIToJAgAAoF8RsMrM000pHV+i+1915ThGAyqNdsVcr4cCAACAMkHAKiOptFV72qo6Wvr1V1knTY3o8XeowwIAAED/IGCVkRfXpnTUuPKYvcqaOz2ih9+mDgsAAAD9g4BVRh55O6W508uj/ipr7GBH63exRBAAAAD9g4BVRl5en9LhY8ujg2BnE4c6amqm2QUAAACKj4BVJvbEM7VXIad86q+yTt2fZYIAAADoHwSsMrGoMak5U8qr/iprzpSInlhJowsAAAAUHwGrTDzydlJzp5VX/VVWddTItVIsYb0eCgAAAEocAasMWGvV2Oyqflj51V9lnTQ1rMdXskwQAAAAxUXAKgNvbXZ14MjyDVeSdNaBEd33BgELAAAAxUXAKgPz30jonBnluTwwa9yQkNbtdGUtywQBAABQPASsMvDs6pSOqy/PBhedHTI6pFc30K4dAAAAxUPAKnHbWl0NqjQKh8qvPXtXZ8+IskwQAAAARUXAKnELlid15oHlvTww6+jxIb2wlnbtAAAAKB4CVol76K2kTtufgCVJjmM0aqCjd3ewTBAAAADFQcAqYYmUVSxpNaiKX3PWxw6N6t5XWCYIAACA4uDKu4QtbkzpxMnMXnU2ewr7YQEAAKB4CFgl7N5XEvrIwQSsziIhoxEDHK3f6Xo9FAAAAJQgAlaJSqatNu52NWFoeW8w3J1/OiSie19JeD0MAAAAlCACVola+HZSp0xn9qo7J02L6NF3WCYIAACAwiNglah7liX08cOiXg/DlyIho7GDHTU1000QAAAAhUXAKkGxhNWuuNWIAfx69+bTR0b1xyUsEwQAAEBhcQVegu5bntRZBzJ7tS/H1of13JqUrLVeDwUAAAAlhIBVgv78crvOP5yAtS/GGB1XH9Zzq1NeDwUAAAAlhIBVYhqb09qv1lFthfF6KL53YUNUd7zAMkEAAAAUDgGrxPz62XZ94bgKr4cRCPXDQtoRs9rZxp5YAAAAKAwCVglJpKze2JTW4WPDXg8lMD57VFR/eJFZLAAAABQGAauE/O31pD5yMLVX+Tj9gIgeeDNJswsAAAAUBAGrhPxpabs+QXOLvIQcozlTwlq4gmYXAAAA6DsCVol4YU1KB4wIqYbmFnm79PgK/eqZuNfDAAAAQAkgYJWIWxfH9ZUTK70eRiANrnY0cWhIS99lFgsAAAB9Q8AqASu2pDWgwmjkQH6dvfW12ZX6z0XMYgEAAKBvuCIvATc9GtM3PsTsVV+MGeyoNmq0fFPa66EAAAAgwAhYAbdsXUpVEaOpw0NeDyXwrji1Sj98JOb1MAAAABBgBKyAu/6RmK46rcrrYZSEsYMdjRro6IU11GIBAACgdwhYAbZgeUKHjg5rxAB+jYXynZMrdf3DMfbFAgAAQK9wZR5Qe+JWP1vcrm+dTO1VIdXVOjr9gIjufDHh9VAAAAAQQASsgLpyQZuuOrVSFWH2vSq0S4+v0P++nNDONtfroQAAACBgCFgB9OyqpFwrzZwU8XooJSnkGF19WpWuWEDDCwAAAOSHgBUwu2KufvBgTD88q9rroZS0Y+vDGlxlNP91lgoCAAAgdwSsAHFdq8v+0qYfnVOtgZUsDSy2759Wpf9+ul3rd7JUEAAAALkhYAXIlQtiOn3/iA4fG/Z6KGUhGjb65ceqdendrYon6SoIAACAnhGwAuKWx2KqjhpdeFSF10MpK/XDQrp8TqUu+XOr0i4hCwAAAPtGwPI5a62ueTCmZFq68lQ2FPbCSdMiOvegqL70lza5hCwAAADsAwHLx5Jpq6//tU2Dq4y+O5dw5aWPHRbVnClhXfSnVrWnCFkAAADoHgHLpzbscvWx37Xo5GkRfXU2mwn7wSeOqNBFR1fo/DtatHEXjS8AAADwQXRL8BnXtfrN8+2a/3pSP/1otSbXhbweEjo5aVpE44Y4uvjPrbr42Ap99JCo10MCAACAjzCD5RPWWj3ydlLn3t4i15X+719qCVc+NXV4SP/3L7Vatj6lz97VotXb0l4PCQAAAD7BDJbHdra5+tNLCd2/PKlZE8P6n8/UagB7XPleJGR0zRnVWrk1raseiGlgpdFlMys0YxT/SQEAAJQzrgb7WSJltWx9Wk81JfXUqpRqokYDNj+uv33tbIVDBKusefPm6ZJLLvF6GD2aMjykOz9dqxVb0vrvp+NqbI7pmAlhnXtQRDNGhuQ4/E4BAADKibGWjmj5aGhosEuWLNnr/cm01bZWq22trppbrdbvcrVyq6umbWntbrcKO0aHjQnp+PqwZk4KKxIyamho0L7OWY6C+pq4rtXza1K6f3lSb25Oy0oaM8jRtOEhTalzNHKgo/1qHQ2vNYqG9x2+jDFLrbUN/TNyAAAAFAIzWHlqanb18d/t+cDt2ZgacYyG1RjV1RjV1ToaPdDRhw+OaNKwSpb+lQHHMTpuYkTHTYxIytTWbdpttWJrWiubXb28Pqkte1xtabFKpK2MMu8d3hkAAAClgRmsPNXV1dn6+vqCnnPr1q0aPnx4Qc8ZdLwm0ksvvaQjjjjC62GgxC1durTZWlve/7EBAFBAzGDlqb6+vuBL14K6HK6YeE2kmpqasn8NUHzGmDVejwEAgFJCm3YAAAAAKBACFgAAAAAUCAHLB4LQjry/8ZoAAAAgiGhykaee2rQDhVJTU6PW1lavh4ESx3YAAAAUFjNYAAAAAFAgBCwAAAAAKBACFgAAAAAUCAELAAAAAAqEgAUAAAAABULAAgAAAIACIWABAAAAQIGEvR4AABRSS7vVn5a2q2mbq4NGhfTPR0QVcozXwwIAAGWCGSwAJePFtSmd99s9Gl7r6F+OrVA8aXXu7S1auyPt9dAAAECZYAYLQEl4a3Na1z0U072fG6ABlZkZq6nDQzr9gKg+/z8tuvPTtRoxgM+UAABAcXG1ASDwWtutvvbXNv32n2veC1dZYwc7+vl5NbrsnlZZaz0aIQAAKBcELACB94MHY/ruKZWqq+3+T9r0ESGdNDWiu5Ym+nlkAACg3BCwAARaY3Na21pdzZ4S2edxlx5fobuWJLQnziwWAAAoHgIWgEC7cWFc35tb1eNx4ZDRV2dX6L+fjvfDqAAAQLkiYAEIrBVb0nKMNGV4KKfjT9s/okWNKcUSzGIBAIDiIGABCKyfLY7rG3Mqcz7eGKNPHhHVX16hFgsAABQHAQtAIO1sc7V5j6vpI3Kbvcr6p0OjupeABQAAioSABSCQfvt8uz5/TEXeP1cZMZow1NFbm9l8GAAAFB4BC0DgWGu1cEVKp+2/786Be3PxsRW6/bn2Ao8KAACAgAUggJa+m9aR40JyHNPzwd04eHRYK7ak5bo0uwAAAIVFwEJZs5YL7CD645J2XdiQ//LAzmZODOuZ1akCjQgAACAj7PUAgGKz1uqnT7RrR5urdJc8ZSTZLt8PqXb0jQ9VyJjezY6guFJpq6Ztrqbtl19zi64+dlhUP1sc16xJvVtmCAAA0B0CFkqS61rduDCulvZMfKqtMBo10FE4tO/Q5LpW29usvntfTNURo6tOqyRo+czCFUnNnd73UDS5LqSmba5c1/Z6qSEAAEBXBCyUlFsei2tbqytjpLoaR8Nr81sF6zhGdbVGdbVSS7vVt/4e07jBjr4yO/e9llBcf301qatPqyrIuY6rD+u5NSkdP5FZLAAAUBjUYCHw0q7VDx6I6Tvz25RIWdUPdVQ/NKTair7NStRWGE2uc7Rul6ufLYoXaLToi7RrtWmPqzGDC/On62OHRnXvK8mCnAsAAEBiBgsBFk9aXf9wTGlXGjnQUVWk8J8XOMZo0jBHTc2urLUsF/TY06tSmjmxcH+2pu0X0spm9sMCAACFwwwWAqctYfW9+9p0/cMxjRroaOKwkKoixQs+jjEaXmt040Jmsbz211cT+ugh0YKec8IQR6u3EbIAAEBhMIOFwIgnra59KCbHSOMGOwr1Y2OCQVWOVnER7ilrrd7Z6mrq8L51D+zqjAMieuDNpL44q7DnBQAA5YkZLPheKm115f1tuu6hTMOJ8UNC/Rquslgd6K03N7uaMbLwIWjOlIieWMl+WAAAoDCYwYJvWWt13UNxtSWtxg5yFA17m3Ack2my4EW4g/TAmwmdcUDhu/1VRY3S1qo9ZVXh8XsMAAAEHzNY8KWfPB7Xt/8eU03UaNKwkOfhSpKiIaO2hNejKF/PrEpp5qTifCZ0wqSInmxkFgsAAPQdAQu+knatrrivTbvjVpPrHA2o9D5YZYUcKZm2Xg+jLLW0W0VDRpEeNorurbnTI3p0Be3aAQBA37FEEL5xy2NxbdnjatwQh6VaeJ/H3knqpGnF+3N1wAhHyzfTxAQAAPQdM1jwnLWZJhatCaspw0O+DVfJtHw7tlL34JtJnXFAYduzd2aM0cBKo10xt2iPAQAAygMzWPDUzxbFtXanq3GDHFVF/R1ekmmr6uJd42MvrLVat9PV2MHF/Txo9uSwnmxK6ewZ/JIBAEDvMYMFz9z4SEyb9riaUuf/cCVJVpmZDvSvtza7OmBE8feoOmlqRI9RhwUAAPqIgIV+l10S6FqpfmhIDqEF+/D4yqROmV749uxdTRzmqHEbSwQBAEDfELDQr9pTVt/6e0zDaxwNrw3O289augd65ZlVKR1XX/zVzMYY1dUYNbcQsgAAQO9Rg4V+85PH49q0x9WkYU5BN+u99O7Wbm//1fk1BXuMtqRUHWGmrb9Za9XSblVb0T+v/QmTInp6VUofPpg6LAAA0DsELPSLHz4cUzxpNXmY0+c6pr0Fqr0dV4igtaPN6opTK/t8HuRnZbOrqcOLX3+VNWtSWLc9007AAgAAvUbAQtFdvSCmirA0bkjfLpRzDVbFkExbWrR7YHFjSidO7r8/U5PrHK3cyn5YAACg94JTBIPAcV2rb/+9TQMrTZ/qrS69u7VP4aqvwcx1rejD4Y2nmpKaNan/ApYxRtVRo7YENXcAAKB3mMFCUcSTVlcuiGnCEKfXMz9ezlh11txqVVfDZxFe2NFmNaS6f1/7YyaE9fyalD40tfidCwEAQOkhYKHgbn0irvW7XE3uZTMLvwSrrNaE1ZWnVXk9jLKzdkda44b0f7CdNSmsBcuTBCwAANArfCyPgrr50czmwZPrSiNcJdNWYf4r8cSTjSmdOLn/Q86ho0N6ZUOq3x8XAACUBmawUDA/fDimRFqaOCz/ZhZ+C1ZZG3e7uvJUZq+8sLgxpWvO6P/XPhwyslZKpa3CIYrvAABAfvhsHgXx/QdikqQxg/J/S/k1XLnWKuVKlex/5YnNe1yNHOjNn6hDR4f16ga6CQIAgPz5KmAZYy4zxqwyxsSNMUuNMSfs49g7jDG2m6/WLsd9yRjzpjEmZox52xjzmW7O9VVjzFsdx6wzxvzCGFNbjOdYaqy1uuK+NtVElXenwL52Byy2LXusRvSh+yF6b8set0+dJ/vqhMlhPdXEMkEAAJA/31w9GmMukHSrpBskHS7pGUkPGGPG7+VHvippVJevJkl3dzrnFyXdJOlaSTMkfV/SL4wx53Q65pOSfizph5IOkPQZSWd2jAX7YK3Vd+bHNKzG0eCq/MOVn1lr1Zqw+vqH2FzYC0829e/+V10dMyGs59cSsAAAQP78VIN1uaQ7rLW/7vj+y8aY0yV9UdJ3ux5srd0laVf2e2PMTEmTJF3Y6bALJf3aWvs/Hd83GWOOkvRtSfM7bjte0nPW2js7vl9tjPmDpH8qzNMqTWnX6rvzYxo72MlrCZ0XwepX59fk/TOb91iNHOCbzx/KzuLGpC6f4124ze6FZa2VYRM0AACQB19cQRpjopKOlPRwl7seViYA5eILkt6w1j7T6bYKSfEux8UkHW2MybYne0rSYcaYYzvGMl7SuZIW5P4MyksybfXt+TGNH+L/cNUbadeqLcnslZfWbHc1YWj+zVIKaXJdSE3bXE/HAAAAgscXAUtSnaSQpM1dbt8saWRPP2yMGSTpfEm/7nLXQ5I+b4w5ymQ0SLpYUqTjMWWt/V9J35O02BiTlLRG0mvKzHJ9wNatW9XQ0PDe17x583J9jiUhkcrMXE0c6iiaxwbCQQlXkvTuTlff92jfq3nz5r333kqlynOJ2s42V4OrvJ81mjUxrCcby/N3AAAAes9PSwT74tPKhMU7u9x+nTIB7RlJRpnA9ntJ35LkSpIxZrakqyRdJul5SVOUqb+6RtLVXR9o+PDhWrJkSVGehN/Fk1ZX3h/Le48rL8NVvssDW9utIiGjqqg3F/iXXHKJLrnkEklSTU3+SxtLwdOrUpo1yfs/TTMnhfW9+2K66JgKr4cCAAACxPurmIxmSWlJI7rcPkLSphx+/guS7rXWbu98o7U2pswM1qUd59oo6RJJeyRt7Tjsekn/Y629veP714wxNZJuN8Zca63lI2x1hKsF+YWrIM1aSZnGFht2u/rxuex75aXFjSn9y7Heh5rhtY6aW1kiCAAA8uOLJYLW2oSkpZLmdrlrrjKzT3tljDla0qH64PLAzudPWmvXWWvTkj4h6T5rbfbKqVqZcNdZWpkZL6hTuBoWrHCV7+zVhl1Wowc5NDXw2Ntb0po63Bd/mjSsxlFzCyELAADkzi8zWJL0E0l3GmNekPS0pH+VNFrSbZLU0dlP1tqu+1hdIukda+0TXU9ojJkm6RhJz0kaokynwoMkfbbTYfMlXW6MWaJ/LBG8TpkQVvazV+2pYIarfLUmrFxZfX0Os1deamm3qqkwvgm5x9eH9czqlM49KOr1UAAAQED4JmBZa/9sjBkm6Upl9rR6XdKZ1to1HYd8YD8sY8wAZWakrt3LaUPKhKrpkpKSHpd0vLV2dadjrpdklQlVY5VZrjhf0hV9fEqBl0xbXXFfaS8LlCTXWm3YxdJAP3hudUrH1fvmz5JmTgzrt8+3E7AAAEDO/HMlI8la+0tJv9zLfXO6uW2PpNp9nO9NZTYt3tdjppRpaHFNPmMtdWnX6rv3xTQpoDNX+SwPXLvD1fghLA30g8WNSX3sMP+EmWn7OVqxtesKYgAAgL3zR6EDfMV1rb4zP6b6IY7CodIOV80trmorjL58Inte+cFrG9M6aKS3+191ZoxRRdioPWW9HgoAAAgIAhbex9rMzNW4wbnvc+WncJWPWNKqJWH1vbksDfSD9lSmRb6TxxYA/eHIcSEtfbfsyzE09WpdAAAgAElEQVQBAECOCFh4n6sWxDRigKPKSDDDVa6zV65r9e5OVz88i3DlFy+uTeno8f6ZvcqaOTGsp5oIWAAAIDcELLzn2gdjGlBhVFtR2uFKklZtd3XdGVXUXfnI4saUTpwc8XoYH3DkuLCWvksdFgAAyA0BC5KkHz0SkyQNqc7tLeG3cJWPDbtc1dUYVUUJV37y0rqUDh/rvxmsirBR0rWyljosAADQMwIW9JPH42pJWI0cGNxwlevs1fY2V46RvnkySwP9JJW2slaK5NhUpb9NGx7Sii1sOAwAAHrW64BljHGMMVcYY/5ujLm047bPGWNWGGNWGmN+bIzxT79ldCuWsNq0x9W4waUfrtoSVrvjVlefTrjym2Xr0zp8rK92jXifmRPDenoVdVgAAKBnfZnBukbSNyRtl3SFMeZaSbdI+r2k30i6SNJVfR0gisd1ra56IKZJQ3PbA8qP4SpXybTV+l00tfCrxY1JnTjZvwHr+IlhPb0q6fUwAABAAPTliuZTkj5jrb3PGHOgpNc6vr9Lkowxb0m6WYQs37ri/pgmDHFyaovt13CVy+yVa61WbXd149k0tfCr59ekddks/+5FNqzG0fY2arAAAEDP+jKDNUrSq5JkrV0uKS1pWaf7X+o4Bj50zYMxDanObKLakyCHK0las93V+MGOb+t7yp3rWiXSNuetAbxSV+Noawt1WAAAYN/6ErA2SjpIkowx0yWFJB3Y6f4Zkrb04fwokpsfjclaaXBVz7/+oIer9btcDa02+sps/86OlLvlm9OaMdJ/3QO7mjkxrGeowwIAAD3oS8C6S9IfjDG/k/SQpBsl3WKM+TdjzGWSbpP01wKMEQUUS1hta7MaPaj0w1Vzi6toiI6BfrdoZUqzp/hv/6uuZk5iw2EAANCzvtRgfV9STNJxkv7bWnuTMeZ1ST+WVC1pvqi/8hVrM00tpgwLbnf+XMPV7rhVPCVdeybhyu+eWZ3SZ4+u8HoYPZpS52hlMxsOAwCAfet1wLLWupJu6HLb/0r6374OCsVx1YKYxg0KdlOLXMSSVttaXd14TrXXQ0EPrLVqbbeqrfB3/ZUkGWNUGTaKJ/1fLwYAALyzz6kMY8zXjDFrjTEn7eOYIYUfFgrtpoUxVYSNqqLBDVe5zF4l01brd7q64WxmroJgZbOrqcP9X3+V1TA+pCXvskwQAADsXU9rxWZLqlOmI+D7GGMuNsbskNRsjNlqjPmeoQe2L8WTVjtiViMGlHbdVdq1WrXN1Y3n0I49KBY3pny9/1VXMydG9DR1WAAAYB96uuKeIekxa+3OzjcaYw6T9CtJgyQZScMkXSfp1mIMEn1z9QOZ/a6CKte9rhq3ufrh2VUK5bAEEv7wVFNSsyYFJ2AdMTakpeuowwIAAHvX01X3CEnLu7n9UmWC1R8kjZd0rDIbDX/JGHNMQUeIPrnmwZj2q3VyCh1+nL3KJVxZa9W0zdWEIU5O+3rBP7a3WQ2pDk74j4aNUq6V67LpMAAA6F5PVzZRSd3trHmGpKSkr1lr11lrX5B0XsexFxd2iOitWxfFlUxbDaws7XC1arurMQMdfflE9roKktXb0qofGpxwlbX/fiG9vYUNhwEAQPd6urrZJGlC5xuMMWOUmbV6vvPSQWttk6SFkk4o9CCRP2ut1u10NW5w8C5gpdzbsa/Z4Wq/WkdfnUO4CppFjSnNnuz//a+6mjkxrKdXJb0eBgAA8Kmerr6flXSmMWZAp9tO6/jnom6OXyFpbCEGhr75wYNxjR7o5NTswW+zV7mGq7U70hpa7ejyDxGugmhxYzJQDS6yjqsP65lVNLoAAADd6ylgzZM0QNLvjTHDO1qyf0mSlfRQN8e35HBOFNmtT8TlulY1OewtFORwNajS6N9PIlwF1bZWq7ra4P25GFrjaEeMGiwAANC9fV7dWGufkHS7pI8os1ywWdJhkhqttU918yPjJG0u8BiRB2ut1u9yNTaASwPzDVffPJm9roJq7Y60xgW4s+WIAY4276EOCwAAfFAu63P+VdI6SV+RNLTj3z+zl2NPlLSmMENDb1z7UFwjA7Y0MNdgJUlrtqc1pNph5irgFq1Mac6U4NVfZR3fsUzwo4dEvR4KAADwmR4/QrbWutbaa621dZIGW2vHW2uf63qcMeZkZZpfPFH4YSIXbQmr9pRVbQ5LA/0i13BlrdWqbZmaK8JV8C0K2AbDXc2aFNaTjTS6AAAAH5TXGh1r7e593D1SmXB1X18GhN675sFYzl0D/TB7lU+4atqW6Rb4DcJVSWhucTU8gPVXWROHOVq1nSWCAADggwr2EbK19i5JdxXqfMjPjxbGNKjK5LShsB/kGq5c16pxW6am7KuzCVel4N0d6UDWCHZmjNHgKqPtra6G1gT7uQAAgMIK7hodvMd1rba3WU2pC+V0vNezV7mGq1Taqmm7q+vOqFJVNBjBET1b1Bjs+qus2ZMjWtyY0keowwIAAJ3w0WsJ+MGDcY0ZFIxfZa7hKp7MhKsbzyZclZpFK4Ndf5U1Z0pYj6+kDgsAALxf8K9yylw8aZVyraoi/q69yqdT4J641ZYWVz8+p0pOQJY8IndbW1ztNyAYHwjsS/2wkNZQhwUAALoI/lVOmcunsYVX8glXza2udsZc3XRuNeGqBK3b6WqMz9+v+airdbS1hZAFAAD+oXSudMrQzxbFFQn5u7FFPuFqwy5XaVe67qzqIo4IXlq0MlkS9VdZsyeHtWhlyuthAAAAHyFgBdiG3a5GD8w9XPXn8sBfnV+Te6dAa9W0La2aqHTVaVVFHhm8FPT9r7r60NSInqAOCwAAdFI6Vzpl5tZFcVWEjS+X0eUza5VMW63a7mr8YEdfoQ17yduyx9WIEqi/yho72NH6XSwRBAAA/0DACqhNu11NGOqvC9V8gpUktbRbbdrj6kdnVykc8l9QRGGVWv1V1vBaR5tLLDgCAIDe44oggNoSVuGQ5Bj/hJJ8w9XWFlc72lzddA7hqlw88nZSc6eVTv1V1pwpYT3xDssEAQBABgErgK5/OKbRA/3xq8un1kqSrLVauyMtYzLNLIyPQiKK67F3kvrQ1NKbND9pakSPvUOjCwAAkFF6VzslLpW2kuR558B8Z6ykTL3V6u2uxgxy9LU51FuVE9e12hO3GlTljw8GCmnkQEeb9riy1vKBAQAAIGAFzXUPxzXS41qP3oSr3XGrrS2ubqTeqiy9siGtQ8eEvB5G0UwbHtI7W11N2690nyMAAMgNAStg2lNWlRFvAlZvgpWU2d9Kkm46l/2tytUjbyc1d3rp1V9lnbp/RA+/nSRgAQAAarCC5JbH4hpQ0fvZn94GpHzrrLLSrtXK5rRqK4x+cAb7W5Wz59ekdMyE0v08Z9bEsJ5spA4LAAAwgxUo21pd1fexNfuvzq/JacPh3oaxrJZ2q027XV1/VpWiYZYElrNYwirkGEVKeGloVdQoba0SKcv7HQCAMkfACgjXzTS3KEQRfefwdOndrX0OU11t2OXKWummc6so+ocWNSZ14uTS/1NzXH1Yz61J6cTJpbsUEgAA9IwlggHxo4VxDasp/K+rkOEqlf7HksBrziRcIeP+5UmddWDph45Tp0f08FvshwUAQLkr/Y+VS8SedquJtf7Nw7tirppbra4/kyWB+AdrrVZtczVxWOk3fzhoVEhXLkh7PQwAAOAx/16x4z3WWq+HsFfWWr27I61YMtMlkHCFzt7a7OrAkaUfrqTM8t2RA5z3umYCAIDyRMAKgJ8+0a7aPnQPLJZ40mpls6thNY6uPp0ugfig+5cnymJ5YNaZB0a0YHnC62EAAAAPEbACYEebqyFV/gpYW/a42rzH1U3nVOlrcyq9Hg586pnVKR0/sXxWIp88LaJHV9CuHQCAckbACoC0lcI+aXGdSls1NqcVCUk/PLtajuOPccF/dsVcVUdKuz17V7UVRknXqj3l32W9AACguMrno2X02fY2VzvarK6jkQVysGB5UqcfUD7LA7PmTIlo0cqUTt2//J47AABgBsv3/NDgIu1aNW1Ly3VpZIHc3bc8qbPLqP4q66wDI7rvDeqwAAAoV8xg+Vx7Sop4uAwvO2t17ZlVqiBYIUdtCatEympwdfl9hjNxWEirtruy1rIXHAAAZaj8rn4CJp60CnvQ5TqZfv+sFeEK+XjwzaROPyDq9TA8M2NkSMs3sScWAADliBksn7OS+jPaWGu1pcWqLWF17RnUWqF3/vZ6Qv/x4Wqvh+GZ8w6J6t5Xkpoxij+xAACUG2awfK4ybJTqp31LW9utGptdVUWMbjyHWiv0TnvKqqXdqq62fP+8HDU+pBfW0q4dAIByxMerPlcZkRLp4ja6SKat1u10VRE2uuncKupG0CcL307qlGnl19yiM2OMpg53tGJLWtP282CNLwAA8Ez5fsQcEMYYFauRYCpttXZHWht2ubr2zCr94AzCFfrunmUJnXdo+dZfZX3s0KjufYVuggAAlBtmsAKgKmLU2m5VU1GY8JNMW23Y5cpKuvq0KlVGCFUojD1xq7akNGIAn90cVx/Wjx6Nez0MAADQz7gKCoCrTqvU+t2u0m7fprJ2x61WbUtr425XV59epRvOriZcoaD++mpC5x1S3ssDsxzHaMIQR6u20U0QAIByQsAKAGOMfnhWlVZtc7W9zc1582FrrXbFXK3entaqbWklUlY3nF2l68+i7TqK42+vJ3TuQSwPzLrg8Kj+5yWWCQIAUE5YIhgQFWGjH3+4WjctjGn1dlfZUqmQkUIdGxGnXauu/TAGVhpdf2aVHA83K0Z52LDL1ZBqR9VR3mtZMyeGdePCOJsOAwBQRghYAfPtU6re930qbZXoWIEUDUnhEBdx8Maflrbrk0cwe9WZ4xgdPT6kF9emdfQE/twCAFAOWCIYcOGQUXU080W4glestXrsnZTmTCFEdHXhURX6w4vtXg8DAAD0E18FLGPMZcaYVcaYuDFmqTHmhH0ce4cxxnbz1drluE8aY5YZY9qMMZuMMX80xozscsxAY8zPjDEbjDHtxpiVxpjzi/U8gVKzuDGlEyaFWYrajcl1Ib2701UiVdz97AAAgD/4JmAZYy6QdKukGyQdLukZSQ8YY8bv5Ue+KmlUl68mSXd3OudMSXdK+r2kGZI+IulASXd1OiYi6RFJUyWdL2m6pIskrSrYkwNK3G+fb9fnjqnwehi+ddaBES1YnvR6GAAAoB/4JmBJulzSHdbaX1tr37TWflnSRklf7O5ga+0ua+2m7JekyZImSfp1p8OOk7TOWvtTa+0qa+1zkn4u6ZhOx3xO0nBJH7bWPmWtXd3xzxeL8ByBkrNlj6u0K40c6Kc/J/5y/mFR3b2MboIAAJQDX1wRGWOiko6U9HCXux6WdHyOp/mCpDestc90uu1pSaOMMeeYjDpJn5C0oNMxH+k47ucdSwiXG2N+0DGz9QFbt25VQ0PDe1/z5s3LcXhAz+bNm/feeyuVSnk9nJz85rl2fZ7Zq30aXO2oIpzptAgAAEqbyXVPpaIOwpjRktZLmm2tXdzp9qslfcpaO72Hnx+kzGzXd621t3a57zxJd0iqUqZr4iPKzFbFOu5/S1K9pD9J+kXHv/9C0h+ttf/e9bEaGhrskiVLevU8gXzU1NSotbW15wM91J6yOu+3LbrvC7W0Ie/Bs6uSevCtpK45o9rrobyPMWaptbbB63EAAFAqfDGDVQCfVua53Nn5RmPMgcosCbxOmRmy0yWNlPSrToc5krZI+oK1dqm19l5JV0v6ouGKEdinu5Yk9Kkjo4SrHBxbH9ZL69I0uwAAoMT5JWA1S0pLGtHl9hGSNuXw81+QdK+1dnuX278r6QVr7c3W2lettQ9JukzShcaYsR3HbJS0wlqb7vRzb0qqllSX5/MAyobrWt2zLKGPH8beV7kwxuhjh0Z1D7VYAACUNF8ELGttQtJSSXO73DVXmW6Ce2WMOVrSoXp/c4usamWCW2fZ77PP/WlJU4wxnV+LaZLalAl+ALrx99eTOm3/iCLsv5azCw6P6s8vE7AAAChlvghYHX4i6SJjzMXGmAOMMbdKGi3pNkkyxvzBGPOHbn7uEknvWGuf6Oa++ZI+bIz5ojFmUkfb9p9Jeslau7bjmP+WNFTSrcaY6caY0yRdI+mX1g8FaoAPua7VvGfbdenxNLfIR2XE6ODRIb2wJhgNTAAAQP58E7CstX+W9DVJV0paJmmWpDOttWs6Dhnf8fUeY8wAZboC3r6Xc96hTPv3f5P0uqS/SFoh6cOdjnlX0qnK1GgtUybQ/VbSFYV5ZkDpuXtZQuceFFFVlNmrfH35hEr99Im418MAAABFEvZ6AJ1Za38p6Zd7uW9ON7ftkVTbwzl/rkyji30d85xybwcPlLVk2ur3LyT0t4v3+Z8e9mLkQEf7DTB6dUNKh4z21Z9gAABQAL6ZwQIQDL98ql2fOyaqaJjZq9765klVuvkxZrEAAChFBCwAOduyx9Xj7yTpHNhHYwc7GlRptGwdtVgAAJQaAhaAnH3v/piuOaOKfa8K4PunV+kHD8ZELx0AAEoLAQtATu5/I6GRA4wOHUPdUCEMr3U0e0qEfbEAACgxBCwAPdre6uq/nmzXVadVeT2UkvJvJ1Tot88n1JZgFgsAgFJBwAKwT65rdendrfrxuVWqoLFFQUVCRpfPqdQNj8S8HgoAACgQAhaAfbr2oZg+ekhUB9NSvChO3T+irS1Wz6+m4QUAAKWAgAVgr/60tF2tCemTR1Z4PZSSdvOHq3X1A23aHWepIAAAQUfAAtCtB99M6JG3k7rpHOquim1gpdGNZ1fr0j+3ynUJWQAABBkBC8AHLFie0B0vJPSr82vkONRd9YcjxoV19oyIvnMfrdsBAAgyAhaA97nj+Xbd/XJCd366RlGaWvSrTzVUaNRARzcujHs9FAAA0EsELACSpLaE1aV/btXmPa5++881ioQIV174+pxKhR3pO/PbWC4IAEAAEbAA6KmmpM77bYs+1RDVt0+pYlmgx751cpVmjAzp039s1Y421+vhAACAPNB3GShjb2xM6aZH49pvgKN7LqrVgEqClV9ceFSFDh4V0j//oVVfn12h0w6Iej0kAACQAwIWUGaSaasFy5P609KE6mqNrj+rSuOHhLweFrpx2Niw/t/na3XzY3Hd/twefWlWpWZPCcsYgjAAAH7FEkEfmDdvntdD8B1ek8LauMvVnS+268I/tuj8O1q0cbereRdU69DtdxGueuD1e7E6avT906v0i4/V6OlVKZ01r0W3PBbTO1vTno4LAAB0z9AOOD8NDQ12yZIlhT6nCn3OoOM1kWpqatTa2prTsa5rtTNm1dxqtWpbWiubXTU2p7V2p6u0K40a6OhDUyOaOy2swdX/+FyF17lnfnuNUmmrp5pS+tvrCa3a5mpotdGR48I6dExIk4aFNHKAyauGzhiz1FrbUMQhAwBQVlgiCPhUMm31rb+3KZ60iqf03j+zH4p0/mjEMUaDq4zqaozqhzraf0RIZx0Y0bghjkI0rCgp4ZDRnKkRzZkakSTtbHP10rq0Xlyb1t0vJ7RxtysrKftbN8ZoYKVRZViKhqRo2LzvnwAAoLCYwcpTXV2dra+vL+g5t27dquHDhxf0nEHHayKtXr1ahX6vdcXr3LNSf41eeuklHXHEEV4PA2Vg6dKlzdba0v2PCQA6MIOVp/r6+oIvF/LbEiQ/4DXpn9eA17lnpf4a1dTUlPTzg38YY9Z4PQYA6A80uQAAAACAAiFgAQAAAECBELB84JJLLvF6CL7Da9I/eJ17xmsEAADyQZOLPBWjTTvQnVKv/YE/5LMdANAXbAkAoFwwgwUAAAAABULAAgAAAIACIWABAAAAQIEQsAAAAACgQAhYAAAAAFAgBCwAAAAAKBACFgAAAAAUSNjrAQAAkI+Nu1yt2JqWJM0YGVJdLZ8VAgD8g4AFAPC9nW2ufroormXr0xo10NGBI0KSpDteaNeONqujJ4R1YUNU44aEPB4pAKDcEbAAAL52/xsJ/eKpdn3nlEpdc0b1B+5Pu1bPr0np2/Nj2n+/kK44tVIhx3gwUgAAqMECAPjY755v1/+9ltTfLq7ViZMj3R4TcoyOnxjRnz5TqxmjQvr4HS3a2uL280gBAMggYAEAfOm2p+N6a3Na8y6oViSU24zUPx0a1Q1nVevCP7bq5XWpIo8QAIAPClzAMsZcZoxZZYyJG2OWGmNO6OH42R3HxY0xTcaYf+1yf8gYc12nc64yxlxvjGH5JAB4ZP7rCb26Ia0fnVMlY/Jb7rf/iJDuvqhWVy6I6Y2NhCwAQP8KVMAyxlwg6VZJN0g6XNIzkh4wxozfy/ETJS3oOO5wSTdK+rkx5p86HfZtSV+S9BVJ+0v6asf33y3S0wAA7MPrG1P6/Yvt+tl51XmHq6yBlUZ3fqpG//63mBqb0wUeIQAAexeogCXpckl3WGt/ba1901r7ZUkbJX1xL8f/q6QN1tovdxz/a0m/l/TvnY45XtJ8a+18a+1qa+3fJf1d0jFFfB4AgG4kUlbf/FtMt328RuEclwXuzdAaR7/7ZI0uu6dVu2LUZAEA+kdgApYxJirpSEkPd7nrYWVCUneO6+b4hyQ1GGOy1dJPSfqQMWb/jsc5UNJJysx8AQD60c2PxfXFWRUF29tq5EBHN5xdrUvvbpPr2oKcEwCAfQlMwJJUJykkaXOX2zdLGrmXnxm5l+PDHeeTpJsk3SlpuTEmKekNSb+31v6yuxNu3bpVDQ0N733Nmzcv/2cC7MW8efPee2/xXkOxdH6fpVL+qVHatNvVy+tTOmdG990Ce+vIcWGddWBE1z0cL+h5AQDojrE2GJ/oGWNGS1ovaba1dnGn26+W9Clr7fRufmaFpD9aa6/tdNuJkhZJGm2t3WiM+YSkmyV9U5lwdZgydV7ftNb+pus5Gxoa7JIlSwr75IBuNDQ0iPcaiq2mpkatra1eD0OS9K93t+pLsyp08Oji9Bi67J5WferIqGZOKmyAQ26MMUuttQ1ejwMAii1IM1jNktKSRnS5fYSkTXv5mU17OT7VcT4pE65usdb+r7X2NWvtnZJ+IppcAEC/eWV9So5R0cKVJN10TrWufSim1vZgfLAIAAimwAQsa21C0lJJc7vcNVeZLoHdeXYvxy+x1iY7vq9WJrh1llaAXhsACDJrra55KKbvn15V1McZUGn0vblVuuL+tqI+DgCgvAUtRPxE0kXGmIuNMQcYY26VNFrSbZJkjPmDMeYPnY6/TdIYY8x/dhx/saSLJN3S6Zj5kr5jjDnLGFNvjPmoMt0K/9ofTwgAyt3ixpQOHR3WiAHF/1/S7CkROUZ6/J1kzwcDANALgdpM11r7Z2PMMElXShol6XVJZ1pr13QcMr7L8auMMWdK+qkyrdw3SPqKtfbeTod9WdJ1kn4paT9l2r7/WtK1AgAU3X89Gddt59f02+Ndf1a1PvqbPTp6fFg1FX1rBQ8AQFeBCliS1NHdr9sOf9baOd3ctkjSEfs43x5JX+v4AgD0o2XrUho32NGwmv5bUFEdNfr2yVX64SMx3XB2db89LgCgPARtiSAAoIT856K4Lv9QcWuvunPStIjW7XS1YkvXElwAAPqGgAUA8MS7O9IKOdLYwd78r+iGs6v1/Qdinjw2AKB0EbAAAJ64/bl2feG4Ss8ef+xgR+OGOHputX82WwYABB8BCwDQ71JpqyXvpnXMhJCn4/j2yZW66dGYrGVvLABAYRCwAAD9bsGbSZ15QETGeNvFb1iNoyPGhrVwBbNYAIDCIGABAPrdH5ck9OmGqNfDkCR9fU6lbl0UZxYLAFAQBCwAQL9auyOtQZVGg6r88b+g2gqjU6dH9P9eZfNhAEDf+eP/bgCAsnHH8wl97hh/zF5lXTqzQrc/265UmlksAEDfELAAAP3GWqvn1qR0XL2/9rmvCBtdcHhUdy5JeD0UAEDAEbAAAP3mxbVpHT0+5Hlzi+5ceFRUd7+cUCLFLBYAoPf89REiSlbatfrpE+1qabdK5LAEJ+IY1VRkis8jIf9diMF/2hJWP1scV1tCSrndv8eMpO7uqYkaXT6nUlVR3mvF9scl7frKid7tfbUvIcfoUw1R/WlpQhcdU+H1cAAAAUXAQlGkXaubFsbVkshczjpGqo0a1dUYRcM9T5wm01Yt7VbXPhhTNo9FQ0bfOrlS1VwEl71Eyurmx+JqTfwjLkVDRjVRaeQAo3Ao98l5a63aEtKPFsaVSFsZIw2tdvTvJ/kzBARZMm21ZoerKcO93ftqXy44PKoP396izx4d9eUsGwDA/whYKBhrrX60MK7d8cxF6rBqR8NqTK8uUiIhoyHVRkOq/3FbeyoT2hJpq//P3p3HyVWV+R//PLeW7urupDsbCWELiyCbCvSgKDsEEMV1FMdlhvGnuP0Uf4osArIoIKhsOoyEGbcZHXclARJCAgmOMGqCDrsLAgokISFrd1d1Lff5/VHd2DTdSS+3llv1fb9e/YJU3751qvr0ree555znpBLGBSe10pJUANQstuWcq5ZnKYWQDMpJ0MwJ9q+hzMqjpe0t5fOE7mzsdc5b1Edr0vjcya0EgfpZFJY+VuCk/VK1bsZ2pRLGCfsmWfJogdcfUF+FOEREJB6UYMmkZfPO5XeWA9/pbcaeMypzd7olaezSVQ5080Xn83dkKYYwo834zAmZijyn1FYYOl9YmiNbcFqSxtypAckKTxkNzJjZYczsKPftC27Lkk4YF5+iRGuyfvy/ea5+U9uOD6yxDx7Ryhnf61GCJSIiE6IESybshpU51mwNSQZUJfAdKp00dp+WwN15vs85d2EfXRnj/PlKtBpBseRcuqScQM+eEjBnam3q8WTS5RsG2YJz/q1ZOjPGZ9XHJqRQcjZnnVkd9V9baWqrsc/MBKv/WuSw3fQxKSIi41P/n3RSd/qLzvmL+tjQ6+wxLWC3aYmqJoOtAiwAACAASURBVFdDmRkz2wP2npkgMDhnYR9fuStXk7bI5LmXE6uLbs8ye0rAnjMSdbHmLpOyF/rYuQv7yOZVZW68fvF4kaP3ru/pgUOddXQrN9yja4mIiIyfbs3JmJWD3xz9RWe3ruqOWI3FtLaAroyzbls5Abzs1IwqEMbItStyPLslZOepATvXaMRqR6a3BXS2OpfdkWVqq0ZMx+PnD+b55DHxKRyyS1dAKmE88XypYtOeRUSkMdVnFCN159oVOc5ZWA4q95xRuxGrHTEz5kwN2LUr4MLbsly1LFvrJskOuDsXL86yqc/ZZ2ZAR0t99q1BiaD8N+AOF9zah7tGs3bE3XliY8heM+OVqHz8qBZu/O/+WjdDRERiRgmWbJe7c/Ht8Ql+B6US5SldhRJceJuC4HpVKDnnLszS2Wrs2hXEqiz2zI6AnToCPrMwq41pd+B3z5Q4ZJd4JVcAr9wlye+fK5Er6PcrIiJjpwRLRpUvDgS/mfgFv4N2mhIwsz3gnIVZCmPY4Fiq54aVOc6/Ncu86fFJ3IfLpI29pgd89rYsX9N6nVH9/ME8bzk4nhX53vGqND/+33ytmyEiIjGiBEtGdO2KHBfelmXPGfENfge1pY09pwecvyirO9F14tq7czyzJWSfmfW3lm+8kgljnxkBT24KVfxiFL99usQhu8ZvBAvKCdaPfqcES0RExk4JlrzEl5ZnWd8TsvfMgESD7PuTTBh7zwy48HaNNNTaNXfneK4nZK8ZAUEMR0VHEgTlJOuixVn6NV3wRZ54vsQe0+M5Ag7QmjJeNivBA88Wa90UERGJCSVY8iJfvDPLtn6YNz0R24BoNIngbyMNCoJr47oVOdb3hMyLccA9miAw9p4RcMFtWYqajvqCWx4sxHZ64KAPvbaFm+5VsQsRERmb2CVYZvZRM3vCzHJmttrMjtrB8ccMHJczsz+b2YdHOGZnM/u2ma0fOO4RMzumcq+iPn1xWZZcEXbtil23GLOhQXAYKgiuplzBeXZLYyZXgxJBeTrqZ2/LqrDKgHv+XODoveO9I8jLZiVYuzVkW06/UxER2bFYRdJmdjpwPXAFcAhwL7DYzHYf5fg9gdsHjjsEuBL4qpm9fcgxXcAvAQPeAOwPfBx4rnKvpP58+a4cvf3O3M5YdYkJSQTGHtPKQbBURxg6F95eXtPXqMnVoFTCmDMl4OLFmor6fG/I1BZriP3o3tvdwn+u0iiWiIjsWNyi6U8B33L3m939UXf/OLAG+Mgox38YeNbdPz5w/M3At4GzhxxzDrDG3f/R3X/t7k+4+3J3f7Sir6SO3LAyx4bekN2mxXMR+kS0JI0ZbcZlS5RkVcOFt2fZvatx1vTtSEeLkQzg6uXN3b9ufbjAGw+M9/TAQacdmOLWRwoamRQRkR2KTYJlZmngMGDpsG8tBV47yo8dMcLxdwDdZpYa+PdbgF+Z2Q/M7Dkz+52Z/V9r9NvsA4ol5y+by9O2mk1nJiBfcq5fqZGGSrriziwdLUZrqin+pF4wZ2rA873e1Ouxljxa4OSXp3Z8YAwkE8bhuye570kVuxARke2LU1Q9E0gA64Y9vg6YM8rPzBnl+OTA+QD2Aj4K/Bk4mfIUxC8CHxvphOvXr6e7u/uFrwULFoz3ddSVC27Lsuf0xqnmNl67dgU8szmsm7vSCxYseKFvNUJfyxWcbTlnZnucLjXR2X1awEW3198o1tB+VixWJmHoyzslhymtjXNt+cBrWrj5Pk0TFBGR7bN6CSx3xMzmAs8Ax7j7PUMe/xzwHnffb4Sf+QPwn+5+2ZDHjgZWAnPdfY2Z5YFV7v7aIcdcAbzV3fcffs7u7m5ftWpVlC+tZi5bkqU1BV2Z5gx+B23NOdmCc9HJmVo35UW6u7uJe187d2Ef86Y3z9TAkazbFpJJGWcf31rrpoyovb2d3t7eyM+78KE867aFfPCI+nzdE/UP3+7hxne0Ma2tua+bE2Fmq929u9btEBGptDh9QmwASsDsYY/PBtaO8jNrRzm+OHA+KK/hemTYMY8CIxbOaBQ3rMyRL3nTJ1cAU1uNnn5XVcGIXXlnlmkZa+rkCmCnDuO5nvoZJa2WhQ8VOK1B1l8N9a5D03z/fm08LCIio4tNdO3ueWA1MH/Yt+ZTrhI4kvtGOX6VuxcG/v1LYPjo177AUxNvbX1zd57eHDZ0OfbxmtsZcOkSrcWKShg6m7PO9CadGjiUmTG7I+DzdzRP/yqFzoaekDlTG+/3f+oBKRY/WtjxgSIi0rTi9ul3DXCGmX3AzPY3s+uBucDXAczsO2b2nSHHfx3YxcyuGzj+A8AZwJeHHHMt8Bozu8DM9jGzdwCfAP6lGi+oFr6wNMdOU5p33dVIMimjv6RRrKhcuiTH3AYMridqSqvRm2+e/nXvE0Veu2e8974aTSph7LtTgofXqNiFiIiMLFYRkLv/APgkcCHwO+BI4FR3Hxxt2p0hU/vc/QngVODogeMvAD7h7j8ZcsxvKFcSfCfwEHA5cBFwY6VfTy3ki05f3pnaQAvPozJ7SsAXljbPKEOlFEpOvuRk0rXtYx/6Ye+Lvmpt7tSAy5pkFOvnDxZ4y8GNNz1w0D8fnuabv9Y0QRERGVnsbjG6+42Mkvy4+7EjPLYSOHQH57wNuC2K9tW7ixdnazo1cEeB7k3vbK9SS16qPW2s2xbW7PkbxaVLsuxS5Q2rx5JAjXRMNftbJm2s2VZei9XIu0C4O39cX2LfnRp3X70Dd07yh+eyFEtOsgE2URYRkWjFLsGSibtuRY500khVMSAY78jB8OOrnXC1pYzrVuT45LGNVfmsWvJFJ3RIJ6vTxyY7MjX489XqZzt1lEdJ661iZZQeXlviwDmNm1wNOmHfFMv/UODk/Rt3pE5ERCZGCVYTWbM1ZM8ZlR9ZiHI6VrUD4FkdxtObNYo1UZfdUZ3Rq6in/FWrn3W0lCsKNrJGnx446F2Hpjl3YZ8SLBEReYlYrcGSifvyXTk6WqzihS0qtdalWutoEoHRJHUIIlcKnVJIxUdIK9kPqtHH2tPGNXc37lqsXz9V5O92b/wRrNlTAvoK0NOvC4aIiLyYEqwmsb4nZKeOygW+1UqAqvEcrSlja05B03hddkeOnStYObCafaySzzOrw1jfoKNYf91UYteugKBJ9j5768EpfvaAil2IiMiLKcFqAl9anmVqq1VsYX21K7RV+vlmthtfuitb0edoNO5Of9FpTTVGH6vkcwZmmJVH/BrNwocKvOmgVK2bUTVvPjjNLQ8pwRIRkReraoJlZoGZvczMXm5mWv9VJRt6nZntjRP4Vvp5UwmjWKrY6RvSVctyTG9rrD5Wyeee1R5wxZ2NN03wrj8WOO5lzZNgtaWNrkzAs1sac0RSREQmpmoJlpn9HfA48BjwCPC8mX3NzKZXqw3N6Jq7y2uvKjF6Veu9hSr5/GblURkZm805pysT/eWk1n2sUm1obzH68o3Vvzb3hbSljZYqVZCsF/9waJr/ur+/1s0QEZE6Us0RrAWUN/I9CJgLnAG8ErjfzGZXsR1NZd22yqy9qofAFyrXjva0samvsQLgSrlhZa7pguooBAbFUuP0sdsfLfCGA5pn9GrQsfskWfGnYq2bISIidaSaCda+wKfc/VF3X+vuP3P3o4D/Br5axXY0jetX5Mikoh+9qpfkalAl2tPZaly/Unelx2LttpA5Uxo3iYfKtGVme8CVyxpnmuDtjxR4/f7Nl2AlAuOA2QkefFZJloiIlFUzwboPGGmk6hLg1Cq2o2ms3RYyZ2pjJ1eVkk4ahQYsQhC1MHTcy0FmlOqxn0XdpkaaJthfdHJFp7MC00Tj4L3daf5zlYpdiIhIWUU/Dc1suZl9xczeC3wDuM7Mdht22Azg+Uq2oxll804yINJ9r+ox6B1Uz21rZFfcmWNWR7SXkXr+XdZz22rprj8UOKGJilsMd/DcJI+sKzVkZUgRERm/St9uvBfYD/gi8J/AocAfzex7Zna2mZ1LOfE6q8LtaDpfWJqNdE+iOASWcWhjo+nJOx0tWn81Ue1p49oV8Z8meMtDBd50ULrWzaipY/dJslJrsUREhAonWO5+kbu/0d13pTw98GTgooFvvx+4HHgZcEUl29FsSqETOiQTCnwnI2FQaKAiBFHryzvpiPtYHJLkKNs4rc3Y2BfvEt9h6KzZGrJLV3NODxz0rkNa+K/7NU1QRESgantRuft64M6BLwDMLAO8AnhVtdrRDC67I9d0o1eV0JY2NmedWRWowtgIrriz+UZJo5ZKGKV451f8+i8lXr2HtjXcpSvg+b6QXKFyG26LiEg8VOSWo5l1mdl8MzvdzE4avu7KzI42s8+5e9bdf+XuN1WiHc3I3ekvRvcBH7egN8r2ZlLG13+pSoKjKYXlBKEZxe3vopJ+/mCetxzc3NMDB512YJpbHy7UuhkiIlJjkSZYZrabmf0AeA5YAnwPWAw8aWa/GNhsGOA44OIon1vKrl6eoyvTnEFv1FqT5epo8lLXrsjRlm6OAiqVlgji3c8eWVti/9nNPT1w0NtekeIn/6tpgiIizS6yT0UzewXwG+AdQA+wFPg+5X2uNgGvA+41s49F9ZzyUpuzzrSIEqy4Br1RtTsIDBUFG9mGnpBZ7c2dyEfVzzpbA665O56FLh5bV2K/nRKR77UXV52ZgEQAG3tjPu9TREQmJZIEa2At1c+B6cB5wM7u/np3f4+7HwPMBT5IuRz7DZSTMIlYrlAuza5gRyot9HICGoW4JvJR6WiBnv54ZvK3PJjnLQc3b3n2kfz9K9P8WKNYIiJNLaoRrDOBecD/dfer3f1FC1fcPe/u/w68GngUOCCi55UhvrA0y5yIig40e9Aro4t6emCzC8yIZ3oF9z1Z5DXzVOBiqNcfkGLxo1qHJSLSzKJKsN4GPObuC7Z3kLs/BbwVyEb0vDLA3Sk2cdEBqZ4NPSEzI5oeGPdEPu7tn4w1W0J2mhKQiGgks1G0JI05UwL+sqlU66aIiEiNRJVgHQjcNZYD3f2PwEmU98GSiFy5LMeMNgW9gxrhNdSr0FFQLSx6OM+bDtL0wJH8w2Fpvrda0wRFRJpVVAnWFGDzWA9291+6+7cjem4BtuWczowqeUll9eWddFKJfNQSAeRjVklw2R+KnPAyJVgjOXLPJP/952KtmyEiIjUSVUT+PLDbDo8aYGafNLN/j+i5m95gcYsoKOiV7blqea7pqwcOF8XfTHvKuOGe+Oy5ti3npBKQ0Vq8EQWBcfDOCR54VkmWiEgziirB+g1wipm17ehAMzsJuAY4YyJPZGYfNbMnzCxnZqvN7KgdHH/MwHE5M/uzmX14O8eeb2ZuZl+bSNtq5fI7s8yeotGrSjDK69ukrFCKbgRL/iaTNrKF+PSz2x/Jc+r+Gr3anvd0p/nuKk0TFBFpRlFF5f8BzAK+ur2DzOwU4IcTfRIzOx24HrgCOAS4F1hsZruPcvyewO0Dxx0CXAl81czePsKxr6FcDfGBibavVoolIgl6NXr1UkEARW1pA0SbaKqvvVhLzDa1XvRwgTccoARrew7aOcnDa0uE2kxPRKTpRJJgufuPgeXAGWa22MwOH/yemQVmdqiZfQtYSHlQYPEEn+pTwLfc/WZ3f9TdPw6sAT4yyvEfBp51948PHH8z8G3g7KEHmVkn8F3KhTc2TbBtNXH9yhytKY0oVErCjLxm+QBw3cp+MuprFRFYfDa1zhWc/qLT1aZR8x05eu8k9zyuC4iISLOJ8hPyHcB/AycD95lZj5k9DeQoTyH8R2At5QqCvx7vyc0sDRwGLB32raXAa0f5sSNGOP4OoNvMht5+XQD82N3v3lE71q9fT3d39wtfCxZstzJ9xa3vCdmpQ6NXI4niNSWD8rS4almwYMELfave+tqmPmd6BJUqG7Gvxc3QflYsji8BWPaHAvP30+jVWPzDoWn+635NExQRaTaR7RDp7pvN7HjgA8AHKU/JG1yT9STwPeBqd986MFVwvJHaTCABrBv2+DrgxFF+Zg6wbITjkwPnW2NmHwT2Ad47lkbMmjWLVatWjbXNFVcKVTK7kqo9RfDMM8/kzDPPBKC7u7uu+loxdFIJjVqM5EM/7OWmd7bXuhljNrSftbePr90/f7DA5W/IVKJZDWe3aQnW94bkCq6ZBiIiTSSyBAvA3UvATcBNAyNO04Et7j58Y+FvASuifO6JMLP9KK/nOtLdC7Vuz3hFWTJbRmZATGZuiVRcseRs6AlVVGccTt0/xe2PFHjbK9O1boqIiFRJxT4l3T3v7mtHSK5w96fcfeU4T7kBKAGzhz0+m/LUw5GsHeX44sD5jqA8kvWwmRXNrAgcA3x04N8t42xjVV21LJqS2ZqyNTqD2KyNqaRCyUkol2969zxe5Jh9ND1wPP7+lWl+8oCmCYqINJPY3IZ09zywGpg/7FvzKVcJHMl9oxy/amDE6ufAwcCrhnytAr4/8P91/amYV8nsijODUFUE+cpduUg2slYyH28/ezDPWw9WgjUeXW0B7rC5TxcSEZFmEZsEa8A1lCsVfsDM9jez64G5wNcBzOw7ZvadIcd/HdjFzK4bOP4DlPff+jKU1425+0NDv4BeYOPAv+t27CIMHYsgt1LAu31mmiIIsK3f6ajr8VyptDB0ntoYMm9GotZNiZ2/f2WaH/9vXd+vExGRCMUqwXL3HwCfBC4EfgccCZzq7k8NHLL7wNfg8U8ApwJHDxx/AfAJd/9JNdtdCVfflWNaRqNXleY+/mosjcgplxKXyqrjezr85i8lDt8j0mW7TePUA1Lc/mjslvmKiMgExe7T0t1vBG4c5XvHjvDYSuDQcZz/JeeoR1tzzh7TYpUfx5byCqmGwMpVQZN1OkD00wfy/NPhGsaciNaUMbM94OnNIbt26botItLodKWPMZtk5K/pgTsWOjR7ZfKoRlXU37YvEVhVtwQYD3fn4bUl9p/d5H8Mk/DuQ9P81/39tW6GiIhUgT4tYygMXdPWqiR0mr563rZ+aFUxlR2abAKZsOruuTYeq/5aonu3xKRv6jSzo/dOsvJP49vUWURE4kkJVgx9+e4cU1sV6FRD6JBs8gzra/fk6Ghp7vegGsygVKd7Anz//jynH6LpgZMRBMYBcxI8tEZJlohIo1OCFUNbsk6nEqyqKIaQrtM1MdXSV3DaVJm74gKrzz3XwtD5/XMl9p/T5H8IEXhvd5r/XKVqgiIijU4JVgw55buhk6H1MGNTLHnTJ1ihT76/ydjUYxHBe58s8ro9Y1cPqS69Ym6Sh9aUKJbq8BctIiKRUYIlsh1RJLMicfaD3+Y5/ZB0rZvRME5+eYqlv1fJdhGRRqYEK2byRW/6qnYSPxoxjadiyXlyY8heM5t8GDdC7z4szXdXa5qgiEgjU6geM9esyDFVBQekSup549tG415/e66tfLzIcftoemCUZrQHBAYbeuq0ZKSIiEyaEqyY6el3pkwywdJogoxVrgCpJq+iWC1OeS+sevLD3+Z5x6s0PTBq79EolohIQ1OCFTMqOCDV9LVf5FRBsErqbc+1/qKzblvIbtM0PTBq8/crr8PSCLGISGNSgiUyCgU/0FeAtnQdRf0NrBRCqo5ymUUPFTjtII1eVUIiMF61S4LfPl2qdVNERKQClGDFiAL+6uovQmuyuZOL/qLK1FdL6E6yjq7IP/ydpgdW0hmHt/DNX/fXuhkiIlIBdfRxLjvS06+Av5p6867RG8DqrfJCg6qn6b9rtoS0p2GqNjSvmJfNSvDXTSF9ed04ExFpNEqwYuRrv8hNOuBXgYux6807/+/Yllo3Q6Tqvru6n/d1q+9X2umHpPnBb1XsQkSk0SjBipHevNOuGTtjdtM72yf186HXX1U3qV+T7W/1wt25+09FjlV59op72yvT/PQBJVgiIo1GCVaMKOAXkUpb/dcSh+2aqJvpio2sJWkcvHOC1X8t1ropIiISISVYIiMIVVBEmtS3f9PPPx2u6YHVcuYRLdx0r4pdiIg0EiVYIiPo7YeOSW7oHHel0NEgRnPJFZynN4fsPVOlI6tl3owEm7POpr6w1k0REZGIKMESGcHmbMjZx7XWuhk1lS1Aqp52vm1g7k49vNOLHi7wJu19VXVnHJ7m27/WWiwRkUahBCsmtAfW+Ey24EDJId3kJfFzBa+rjW8bWa5YXo9Taz/4bT9//0olWNV2ystT3PFYgTDUdV5EpBEowYqJ/iKkNF+rKtwd5bPw7//TT0pXiKrozTsfObK2654eXVtil86AKdr7quqCwDj1gBS3PVKodVNERCQCCp9iojfvtKhqclX05rX+CqAUqmrlWE12xLQv70zL1Pa9vvGXOT52ZHNPi62lMw5v4Zu/VrELEZFGELsEy8w+amZPmFnOzFab2VE7OP6YgeNyZvZnM/vwsO+fb2a/MbOtZrbezBaZ2UGVfRXjd/N9/ZquNUaTDXY39oWce4ICzZKDlmBVR+iQrOGbvSUbsnZryL476SJTK1NajT2nJ3jgWZVsFxGJu1glWGZ2OnA9cAVwCHAvsNjMdh/l+D2B2weOOwS4Eviqmb19yGHHAjcCrwWOB4rAMjObXqGXMSGFkgoOVEsprG2wWy/coS4qL0jFfevXec5Qafaa+/hRLdxwj0axRETiLlYJFvAp4FvufrO7P+ruHwfWAB8Z5fgPA8+6+8cHjr8Z+DZw9uAB7n6yu3/T3R9y9weB9wGzgNdV9qWMTymEZNx+WzFUKLkS2QFmgNaiVVw9FLBZ8miBU/ZP1boZTW/ejATFkvOXTaVaN0VERCYhNiG7maWBw4Clw761lPLo00iOGOH4O4BuMxstmphC+X3ZNMGmVkToaE+iMZjs9MDntjnnnajpgVDub6WIYv/J/l7q2WRfW28e2tO1++MuhTB/v6TW29WJTx/XylfuztW6GSIiMgmxSbCAmUACWDfs8XXAnFF+Zs4oxycHzjeS64HfAfeN9M3169fT3d39wteCBQvG0vZJc/fyiIJUVL7ktNUw2F2wYMELfatWfW1QMihvNiyVtSXrfLrKe64N7WeFQoH3v1rTA+vFwXOTrNvmPLdNGw+LiMSV6tINYWbXAEcCR7r7iHM0Zs2axapVq6rbMMoztZRgbd9kRxLyxdpPDzzzzDM588wzAeju7q5JXxv0/te08G/3aT1IpRVCpzVV3X43tJ+1ZtrpaovTvbbGd9bRLVx/T47L39BW66aIiMgExOlTdQNQAmYPe3w2sHaUn1k7yvHFgfO9wMyuBf4BON7d/zzp1krsrNsW8tn5mh44KJMy8loKsl1RTH2s9RKsRJw+BZrEEXumeGRtiU19GsUSEYmj2Hy0unseWA3MH/at+ZSrBI7kvlGOX+XuL+zoaGbX87fk6rFoWhwto/aBWD2LItAthlR9JKGetaXKRT+kcvqLTktSfU5e6lPHai2WiEhcxSbBGnANcIaZfcDM9h9IjOYCXwcws++Y2XeGHP91YBczu27g+A8AZwBfHjzAzP4F+Gfg3cAmM5sz8NVRpdc0JkFgaDlM5WzNOVNaFegOFXWfa7RCF1G8nud7nc8cr1FTeamj9k7x2HMl1vdoFEtEJG5ilWC5+w+ATwIXUi5EcSRwqrs/NXDI7gNfg8c/AZwKHD1w/AXAJ9z9J0NO+1HKlQOXUy75Pvh1NnUkGZRHWOSlogl0Q85X9UCpsv6i096ixF5Gds7xGb50l0axRETiJnZFLtz9RsobA4/0vWNHeGwlcOh2zheL6CYZlDcbzkxyq5qb3tnOh37YG02j6kAUyVWh5CQCMFURkSpSZVDZkcP3SHLNihxrtoTs3Bmr+6EiIk1NV+yY+MARLVoPUyFrtoZceFKm1s2oW1FuhNso0wSjeB2bs06npqXKDnx2fiuX3ZGtdTNERGQclGDFREfa6C/WuhX1JYogN3SnpOIWo2pNGjn1u4rYnHXOOUHTUmX7XjE3SRDA/X/VH6KISFwowYqJ1lR5E1wpi2okZN02Z/YU/RmM5qxjWtiaU78bKprS7OX3VNNSZSwuPSXDJUuykY4mi4hI5SiyjIkoA7FGmaY1We5OX9755LEaRRjN1FYjW4g2qItz/4uq7ZuzTldGyZWMzcyOgPn7pfj+/flaN0VERMZACZbETlRB7nM9zk4d+hPYHo2wVIamB8p4feR1LXznN3m2aURZRKTuKbpsUnEdRYiq3e5OT7/zae1BtEOBQSniTdji2P+ianMpdAJT8irjk0wYF57UygW39dW6KSIisgNKsGIkEUCxiddhRRmUP9ejtVdj1ZUJ2Jxt3n4H0fa9tVr3JxP0ur1SJAK45/FCrZsiIiLboU/5GJnaYmztb85AN8oANxwYvfrUcRq9GotPH9fCtgr0uziOYkWhv+h84hj1PZmYL5zaxuVLs/Tlm/OzQEQkDpRgxcinjmuNdP59XALcqNv57BZnrjbtHDMzo1LFy+LQB6Ns46a+UMUtZFLaW4wLTsrwqZ9rqqCISL1SlBkjicCIOs6t9wA36vYVSk4xdM7SCMK4ZFJGtgnvmEfd/zb2OeedqE2tZXKO3jvFHtMCvvPr/lo3RURERqAEK4aaZS+USiR/T28OufT1CnDH6/z5razvDSty7npN8qNuV0+/09Gi0SuJxrkntHLrIwUeXqMNiEVE6o0SrJjpSBs9Ed+0rMcAtxJt2ppzMikjlVCQO16phFGqTH4F1F8frER71m0LufAkjZxKNILA+Nd3tPHpW7L0NOnaXBGReqUEK2bOOaGVTdnoI916CXBvemd7Rdri7jy3LeSikxXgTlRrhacJ1lMfjNrWnDOlxVSaXSI1oz3g0lMyfPD7vU1dYVZEpN4owYqZZAVHEmod4Fby+Z/eErJLZ6AAdxIumN/Kcz0VHMaicfvgcz0hF2j0Sirg1fOSnH5ImrN+1tc008dFROpdstYNkPFLJYxCySsy1e2md7bzoR/2Rn7eHT1nJfXmHcM4cqGS1AAAIABJREFU61gFuJORTBihl0cDK5moDvaHavbDSvbBddtCZrVr9Eoq5y2vSLN2W8hld+S4+BStMRURqTWNYMXQeSe28ty2yk7VqtZIQqWfJ3Tn2S0hl75eyVUUujLGpiptOtwIfbAUOr155zMnKOiVyvrw61rJpODSJVmNZImI1JgSrBhqSxv5Ksy3r1TgOZjAVSOA/uumkN26NDUwKuec0MrmKiVYUNlkvxp98C+bQi7RiIJUyTknZOjKGGffkqUUKskSEakVTRGMqcGCA5l0ZROHoQHoZKdsVXt9zaa+kEzK+IT2vIqMmZFOGP1FpyVZvaQ1qmmD1eyDm7Mh7WmjNaXkXqrnrGNa+dHv8rznP3r5t3e1a2sAEZEaME0lGJ/u7m5ftWpVrZtBKXQuuj3LvOmJmrVhe8FurYsV5IvOM1tCrjytrabtmIzu7m7qoa8NVyg5Fy+ubd8bNJaEqxZ9sRQ6T24MuepN9d//2tvb6e2t7rpLqbz/ebLIJUuyfOXNGQ7cuT7upZrZanfvrnU7REQqrT6uujJuicBwhzB0gqA2dyhrnUSNJnTnyU0hV52mqVmVMFhcpVhykjXeU6xe++CTG0M+f6r6n9TOa+Yl+Y/3tvOJn/TRvXuCTxzdqj0ARUSqRGuwYmzOlIB1PRqBHO7JjSG7dwUkapR4NoOLTsrw7NbKlmyPq2e3hMzqCEhXcQqlyEhmdQR87x/b2aUz4LSbe1j5p0KtmyQi0hSUYMXYWce20pd3VYwa4pktITPatO6q0jLpcsl2LaR/sc3ZEDM4+3j1P6kPZsa7Dm3hR2d0sPT3Bd7+jW3c87gSLRGRSlKCFXMz243nexXkAqzvCUknUEnsKvncyRme2aJRrEHZvLOpz7UPkdSlKa3G5W9o4+bT21n+hwKn3byNm36ZY0tWf8MiIlFTglUHFixYMOGf/cwJGbbkGm8U655b/m1cx2/sCymU4IKTFNyOx2T63mB1vHyxsfrecGPpi4NFVa54o/rfRE2mL6oNYze9PeDS17fx0/d3MGdqwEd+1Mc7v9XDv/53jt+vK+HudfE+iIjEmRKsOjDZD7OZ7caGBhvF+sUt3xjzsZuzIX15uOT1Cm7Ha7J97+JTGn8Ua0d9sVAqF1W58rSM9lubhHoI6pupDamE8eaD03zvHzv49rvb2WN6wDd/3c/bv9nDeStn8rnb+/j+/f088GyR/ga/iSIiEjVVEWwAnzkhw7kL+5jR7gRNFuBt6gvpyTufP7X+y2E3olTCyKSMrTlnamtz9T0oJ1dPbAz54hszKqoisZVJG6cekObUA9IAHPqvV3P6IW/ikXUhP3ugwB/W515IsozyZvezpwRMbTU60kZHC3S0GB0tRnvaSCfK14ZUApLB3/5fRKRZaB+scZo5c6bPmzcv0nOuX7+eWbNmRXrOuNN7Ak8++SRR97Xh9D7vWKO/R9XoZ2NRD++z2lDZNtx///0ceuihkZ9XZLjVq1dvcPfGvXBL3dMI1jjNmzcv8s1f63VD2VrSe1Kd90Dv8441+ntUL6+vHtqhNlS2De3t7TV/bdIczOypWrdBmpvWYImIiIiIiERECZaIiIiIiEhElGDVgTPPPLPWTag7ek+qQ+/zjuk9qo56eJ/Vhvppg4hInKnIxTh1d3e75pBLNdTDWgxpfOpnUi3t7e309vbWuhnSBMxstbt317od0rw0giUiIiIiIhIRJVgiIiIiIiIRUYIlIiIiIiISESVYIiIiIiIiEVGCJSIiIiIiEhElWCIiIiIiIhFRgiUiIiIiIhIRJVgiIiIiIiIRSda6ASIiIiJxti3nfHd1P8v/UMAB9/Ljna3Ge7tbOO5lScyspm0UkepRgiUiIiIyAf1F50t35fj1U0Xe/+oWvvu+DtLJvyVSa7aEfPs3/Vy3Msclp2Q4dDeFXSLNQH/pIiIiIuP05PMlPvaTPj76uhYumN864gjVzp0B552YYWNvyCd/1sdReyf54BGtNWitiFST1mCJiIiIjMNv/lLkYz/p46Z3tvOGA9M7nP43vT3g2+9p59ktzlXLslVqpYjUihIsERERkTH6/boSlyzJ8oN/6mDXrrGHUWbGxadkAPjyXUqyRBqZEiwRERGRMVi3LeQTP+3lW+9up6NlYkUrzj0xw+MbQpb/oRBx60SkXijBEhEREdmBUuh85Ee9fPXt7czqmFz4dO1b2/jK3Tme3RJG1DoRqSdKsERERER24NoVOd7+ijT77pSY9LlaU8b1b2vj7Fv6ImiZiNQbJVgiIiIi2/H7dSVW/7XEuw9LR3bOl81KcOCcBLc8mI/snCJSH2KXYJnZR83sCTPLmdlqMztqB8d/zMweNbOsmf3ezP5xhGPebmaPmFn/wH/fWrlXICIiInFRCp2zF/ZxzVvaIt8s+DPHt/Kvv+ynp98jPa+I1FasEiwzOx24HrgCOAS4F1hsZruPcvxHgKuAy4ADgYuBfzGz04YccwTwA+C7wKsG/vsjM3t1BV+KiIiIxMC/3dfP216RZufO6EOmdNI4+7hWvnJ3LvJzi0jtxCrBAj4FfMvdb3b3R93948Aa4COjHP8+4GZ3/y93/7O7fx9YAJw75JhPAne7++UD57wcWDHwuIiIiDSpnn7n5w8W+Ke/i25q4HAn7pfiwTVF1m1TwQuRRhGbBMvM0sBhwNJh31oKvHaUH2sBht8WygKHm1lq4N9HjHDOO0Y75/r16+nu7n7ha8GCBWN9CSI7tGDBghf6lvqaVIr6mVTL0L5WLBZr3Zxxu3ZFjk8e00IQRDs1cLhzjs9w7QqNYok0CnOPx7xfM5sLPAMc4+73DHn8c8B73H2/EX7mCuD/AG8EVlFO0G4FZgNz3X2NmeWBD7j7d4b83D9SHvlqGX7O7u5uX7VqVbQvTmQE3d3dqK9JpamfSbW0t7fT29tb62aM2XPbQj78o15+8s8dka+9GsnbvrGNb7yrna622Nz7rltmttrdu2vdDmlejf5X/HngNsprtQrALcC3B76nsXgREREZ0ReXZblgfqYqyRXAR1/Xyo2/7K/Kc4lIZcUpwdoAlCiPPg01G1g70g+4e9bd3w+0AfOA3YEngW3A+oHD1o7nnCIiItLYNvSEPL3FOWy3ZNWe84R9k9z7RJG+fDxmFonI6GKTYLl7HlgNzB/2rfmUR6i297MFd3/a3UvAu4Bb3X1wBOu+iZxTREREGtPXfpHj40e9ZJVARZkZ/+c1LXzjVxrFEom72CRYA64BzjCzD5jZ/mZ2PTAX+DqAmX3HzIaupdrXzN5nZi8zs8PN7PvAQcBnh5zzeuB4MzvPzF5uZucDxwHXVe1ViYiISF3o6Xfuf7rEkXtVb/Rq0JsPSnH7IwXCUKNYInFW/avHJLj7D8xsBnAhsDPwEHCquz81cMjw/bASlEu770d5DdbdwGvd/ckh57zXzN4FfIHyflmPA6e7+68q+VrqUX/RuW5Fjr4CFEqjX9wDg5ak8aHXtjCtzUglqjM/XRrT1ly53+WKOw4okoHRnoZPHttKS1L9TkSi9+//088Hjmip2tqroYLAOGm/FHc8VuD1B1SuNLyIVFasEiwAd78RuHGU7x077N+PUt6QeEfn/DHw4yjaFyfFknPFnX8LbJOBMaUFZrWXk6bRPlzC0Okvlj+E+vLO0Fyso8X4zPGtSrpkVLmC88VlOfqLjhm0Jo3OjDE7OXqfG1QoOX155wtLs5QGJvkmDKa3Bfy/41qr0HqRynF3vnJ3P5uzIUMHMAwYevshFRjnz2+lNaXrbNTcnSWPFrjtzI6ateGfDk/z4R/2KcESibHYJVgyeTeszLFma4gZ7NQRMCc9vpmiQWBk0pBJGzPa//a4u9PTD5cuKQe/iQBmtQecdawCXylX5NqcdVIB7DQloCU5/hnKqUQ5GevM/O2xYsnZ2Oecv6gPgK6Mcc4JrTW5+ywyXu7O1ctzbM6WU6gprcYunQGJ7ey7lC86ly/NUghh56kBZx2ja2xU7v5jkWP3SVZ836vtmdYW0Jkxnny+xLwZiZq1Q0QmTglWEymUnIsXZ0kFxh7Tgsg/QMyMKa0wpbX8gVAKnfU95cA3mYALT8poWlcTumpZlo19zvQ2Y68KBAvJhLHTlHK/cnc2Z53P3prFDGZPUfAp9Smbdy6/s3wzqitjzJsejPmmQDpp7DYtQejOM1tCLrq9j8teX71y4o3sG7/q59q3ttW6GXzotS0suK+fK95Y+7aIyPgpwWoSg0Hu7tOCqk3fSwTGnKnl58oXnc/fUQ4mdurQdK5mkCuUE/rOVmPvmdW5C2tmTGszprWVE/x125zzFvXR2Wqcd6JGtaT2vnJXjvW9IakA5k4NSE7iehyYsVtXgt68c87CLFe+MTOp8zW7NVvC8syLjtrX/zpstySXLMmSLzpp3ZgUiR0lWE3gksVZEgFVC3JHkk4au09L4F4Oes9d2MfsKQGfUqLVkK5almVT1pk3fftTnSopERhzO8vPvTkbct6iLB0txoUnKdGS6rt6eZbne52OFmPPcYxWjUV7ujwCdsFtWa56k0Y8Juobv+rn/7ymuqXZt+eNB5QrCr7lFVqLJRI3tb9NIxV14W19tKXLU6XqgZkxZ2rAXjMCevrLidYNK3O1bpZE6JLFWfIl2GtGombJ1XBdmYC9ZyZoSxnnLsryxTuztW6SNAF358o7s5y7sI9iCHvNCJg9JdrkalAqYcxoNy5fqr49EWHo/PKJIkfVoDT7aE4/JM0PfpuvdTNEZALqI+qWirh4cZaprUZXpv5+zYOJ1p4zAtb3hlx4Wx8l7fsRexfd1kcmVT8J/XBTWo19BkZyz1FyLxXi7lyxNMt5i7IEVp49MLO9MonVUF2Z8o0rGb+Vj5eLW9TT6HZXW0AyARt6wlo3RUTGqT6jIJm0y5dmSSeoy+RqqME1BLOnBJx/a5arl+vua1x97vbyFLxpbfXd5wCmt5dHUZ/rCblkcRZ3BaUyee7OF+4oJ1apRDmxqvbfQyLY/j6GMrLvrc7z7sPqZ3rgoH84NM33NYolEjv1HwnJuF17d45cwetioe5YtSTLIwv5Inz2Vo1mxc1lS7K0pYhFcjUosPK6wKmtxjkLs3ztHo1mycS4l4v4nLcoS2uqXNSls0Y3t9rTxqY+XT/Hoy/vbOwL2bWr/q5fJ+2X4s7fF2rdDBEZp/q7msikFEvOs1vr84NiLHaaErDz1IDzFmW5doUC3ji4alkWpzwqFEcdLcbeMwKe2RJy1TKNoMrYDU2s2tPlxGpqa22nmCUD+Oav+mvahrhZ+FCeNx1Un4Ukkgljt66AJ54v1bopIjIO8YyIZFQX3p4d134q9ag8mhWwsTfkC3co4K1nX72nvEHqzlPjfSkJAmPPGQn6i+UiHSLb4+5ctuTFiVVHS31cc0sOZ7y6/qa61bOfPlDgbXVcqe+dh6T5oaYJisRKvKMieZEr7yzvOVStfa4qyay8kWYyKE8Z1BqZ+uPu/GVTyB7TG+cyMmdqQHsazl+kPicvNXSNVUdLfSVWg3IFmFpnbapnz20LyaTKBXDq1ZF7JvnvJ4q1boaIjEPjREZNrlhyNmedGTGdpjWa6e0BszsCzlmY1cLtOnPx4hxzOwOCGI+WjqQzUy6lfe6iLKHWAsqAK+988RqrekusBuVLTiZdn22rR9+/P8+7Dqnf0Ssoj7DvMzPgj+s1TVAkLhorGm9in1ucZbeYrrvakUy6vDHn+bdmVVa7Tly/IofjtDdoINeWLq97OGdRlqIS+6b2peXlfawGy63Xeo2VRGv5HwvM3y9V62bs0OmHtGhPLJEYacyIvMlctyJHKmGkk437wZ9MlO/gPbMl5Jq7lWTV2jNbQ3btbOzLR0uynNifd6uSrGZ0/Yoc5y7sG9g0O4hFhcxQ01rH5ZnNIbOnBCRjMK3+1Xsk+J8nNU1QJC7q/xNDdmjN1pC5U+v/A2KyAjP2mhHwfG+o/bJq6Io7s8xos1gXUhmrVGIgydJIVtPIF53P3trHxj5nzxkBszriUzRoa87p1AjbmP3swTxvPbj+R6+gvC75wDkJHl6jJEskDpRgxdyXlmeZ2tocwS6UP2T2mJ6gtx++eKeSrGpzd7ZkPRZ386OSShh7ziiPZGlNVuMarAx48eIsu3QG7NIVv/WFm7POZ45vrXUzYmP5HwqcsG88EiyA0w9Ja5qgSEw0T5TUoDb0OjPb4xUERGGXroD+ElyxVElWNV2+NBerDayjkkoY86aVR7JUXbDxXHN3jnMXlkuu7zkjEdtKrO7lggiyY+t7Qjpb4zW1/pBdE9z/dEnXIJEYaL5IqYF8aXm5LHuzjF4Nt/PUgGIIlyvJqppt/d60i/zTSWOXrnKxFQU4jaEUOhfc2sfWnLP3zKCuS3XvSK7gtMQoWai1Wx7M85aD67t64HBmxqt2SfC/z6iaoEi9U4IVYxt6nRlNOHo11JypAaEryaqGq5dn6co0d3/LpIydOgIuul39Le6+tDzL+bdmmTM1YG5nfNZZjea5npDPztf0wLG647ECJ708PtMDB73tFWl+9qCmCYrUOyVYMXX9ihyZVPOOXg01e0pAKSwXX5DK2djnTG9Tf+toMTrSxufvUH+Lo1JYLmKRK8I+MxMNM+pTConVdLda2twXkk4abTHcZuKQXRP89mmNYInUOyVYMbV2W8icKfH7cKiUOVMD+otw1TIFvZWQLzrJACX0A6a3l5N6VbOMl2vuznHeoiw7Ty1vJt0o+vJOJqW/zbG69ZECpx0Yv9ErKF+D95wR8PgGJVki9SxZ6wbI+A1WMqvVYuYP/bB3TMfd9M72CrfkxXbpDPjLphJfuSvHp1VJK1KX35mreUC6o35X7f42tzPgiedL3LAyxyeOUX+rZ+7OJUvK++ftMzP+0wGHe64n5POnZmrdjNi47eECC06v7vUiSm89OM3PHshz9vH6nYvUKyVYMXTlshwz26sb7I41qRrtZ6oV/O7WFfDExpDrV+Y4S0FvZPJFpyVZ/QRrPP1u+LHV6HN7TA/404aQUugkVL2tLmXzzucWl0etOloq+zsaS3+Nul+6O+6o/41Rb78TOrEuaHLkXkmuW5nj7ONr3RIRGY0SrBjq6feqlcqeSGK1vfNUOug1K28M+6cNIbmC06ppM5NWKDmJKudWUfS7avS5wMrl2z97a5ar3tRWseeRiblqWZZNWWevGUHFEpDx9tWo+2W52FHjTHestCWPFThl/3hODxyUTBgzOwLWbg2ZM1W/e5F6pL/MmHF3qjW7Jarkavg5K3HeocyMvWYEXHi7NoaNwlXLcsyo0sbClegfle5z6aQxs924bInWY9ULd+fC2/rIl2CvGYmKJFfVuJaNxbZ+52xNiR6z2x7O84YD4p1gAbz5oBS3qJqgSN1SghUzVy/P0VmFqQ2VDhwqHZwkAmOPaQEX3Kagd7L6Ck57hadWQbz7XGcmoBA6167IVeT8Mna5gnPOwiwz2ytTyCKqfhTFObIFp1WVA8esFDrP9zk7NUCBk/n7pVj2h0KtmyEio4j/VabJbMl5xfciquZd2UoGvS1JY3qbcalGFupetftcJezaGfDsllCjpjX0peVZLl6cZa8ZQeQluOtlxGqotVtDLjpZo1dj9T9PFnnNHo2xMqI1ZaSTxpZsWOumiMgIlGDFjHtlS2XXKoCo5MiCeznwkvErlpxKr52vRZ+rRLBsZuzWpU2Ia+WSxVn6CrD3zGinBNZjYgXlv00zFbcYj0UPFzjtoPhPDxz0hgNS3PaIRrFE6lHsEiwz+6iZPWFmOTNbbWZHbefYb5mZj/DVO+SYY0c55uXVeUVjVworG+zWOoio1PPP7QzY0OvkChpZGK+v3J1jagWnpDZan2tNGa0pU0JfRcWSc+7CPjpajJ0jXPBfr4nVoDVbQy46SWW6x+PhtSUOnJOodTMiowRLpH7FKsEys9OB64ErgEOAe4HFZrb7KD9yFrDzsK8/Az8c4dgDhx33x0gbH4FrKhzs1oNKBTXzppdHFtyVZI3Htn5naoXWX9VL8Bp1O2ZPCVjf65Q0VbDirl+R47xbs+w+LYjs2ljviRWU90IshpCJeBpkI/vzhhJ7zWisPdA6MwH9RSeb17VGpN7EKsECPgV8y91vdvdH3f3jwBrgIyMd7O5b3H3t4BewN7AXcPMIhz839Fh3r7tt0rfkvGIJVr0FFFG3JxGU725fslhFCMYj9MpsaN3o/W33roDPaapgRX3xzizrekJeNjMglYguuYqDZ7d6pKN1zWDRwwVOOzBd62ZEbv6+KnYhUo9ic4U2szRwGLB02LeWAq8d42k+CDzs7veO8L1VZrbGzJab2XGjnWD9+vV0d3e/8LVgwYIxPvXkhRXaTLJeg4qo2zW4yeg1d9dvkrVgwYIX+lYt+1ozirK/pZNGKmFcW6d9Le797OLbsxRCmDc9EcmIRBxGrQaVQqdQcj4Rk43Uh/a1YrFYs3bc83iBo/dujAIXQ7354DQ/V7l2kboTp6vNTCABrBv2+DrgxB39sJl1Au8Ezh/2rcERsN8AaeB9wHIzO8bdfzH8PLNmzWLVqlXjb71MyId+2BvpRrFzO40/bQgH9hOrv6kiZ555JmeeeSYA3d3dDdnX6jmQjbK/7TzVeHxDfVb4ims/K4XOZ2/NslNHwJQIRvPruS+O5pktIZ87OT5rr4b2tfb2ym40P5ot2ZDMQNW9RjNnasDzvU6x5CQjGskVkcmLzQhWBN5L+fX+x9AH3f337v51d1/t7ve5+0eBJcBnatHIaotDgBFlG82MXToDLtZUwR0qlJxm/LyOqr+ZGbM6jMuXaqpgFL56T45zF2XZrasxkquJJPL5YnmtjdZejc8djxU4+eWNUz1wuKP3TnLP47UbHRSRl4pTgrUBKAGzhz0+G1g7hp//IPATd984hmN/BbxsfM2rrHzRSTZxOd4og6G2tBG687V7lGRtz9ack0lFv5dQM+nMBGzNufbGmqQv35Xj6c0h+8wMJj0KEafpgMM9vSXkklPiM3pVL25/pMCpBzRugvXWV6T5maYJitSV2CRY7p4HVgPzh31rPuVqgqMys8OBVzJycYuRvIry1MG6ccM9/bRF/PkQtyAjyvbu2hnw1831OX2rXtz0y35aI06w4iLKvjZ3asBldyiZn6jLl2bZmnP2npkgmOS03rhd84bakg1pT5umgY1TseRsyTkz2mMT7ozbnjMSPLVRm5yL1JO4XXGuAc4wsw+Y2f5mdj0wF/g6gJl9x8y+M8LPnQn80d1XDP+GmX3SzN5iZi8zswPN7ErgLcDXKvcyxi9biH40IY6iCpCCwOhoMb5ylwLf0fQXoSXCVZpxC26jam8mbeSKGsWaiItu78OAXbsm91FVb6NW450e6O6s73EuitHaq3px35NFjpgXp+XmE3P4Hkl+85e6K34s0rRilWC5+w+ATwIXAr8DjgROdfenBg7ZfeDrBWY2BXgX8G+jnDYNfAl4APjFwDnf4O4/jfwFTEJ/0Wlp3BkONbFTh/Fcj0axRlMInWSsrhDRiyoo33lqwKUaxRozd+f8RX10tgbM7Jh8chV3z2xxduls8j/GCVr4UGOWZx/urQen+OkDmiYoUi9id1vH3W8Ebhzle8eO8Ng2oGM757sauDqq9lVK6Ex6esxQcQ46oqr0ZmZMbTW+fFeOs4+PR8njaouq0mKc+1sUMimjv1i/1SvrSbHknH9ruZjFZKaoNkqfy+YdxznrWI1eTcRjz5V4+ezGT04PmJPgkXUlXWNE6kTjX3WkIUUVPM1sN9ZrFEu2I7q+FnDFnRrF2p5s3jlvUZZ50xs3uRrPzSF35+ktIZe9XsnVRPxxfYl9ZgZNkXCYGQfNSfDwWk0TFKkHFUuwzKzdzF5nZieY2bxKPY80ryiCKDMjkzKuX6HAV0YXRV+b2mpszWkd1miuX5nj4sVZ9pkZkJpEIYdGSa6gPDVwbmdzJAiVsOihfFNMDxz01lek+en/FmrdDBGhQlMEB6r23QLsNOSxLcBvKVcCvB9Y7e5/rMTzy/bVcwBSC3OmGH9RRUGpgrZ0OZk/61hNSR3qK3flWN8bsvckRhsa7brW0++Ywf9TX5mwX/y5yMePbp73r3u3BF/QvnsidaFSI1jXUt6f6mfAFcD3gXXAscDZwHeBx8xsc4WeX5pEFEFVEBjuqMpbhTRK4BvF65jdYazTlNQXuWpZlk3ZkL1mJBo6uRrP6FUpdNZsDbnklOZJDqK2qS+ko8UmNRoaN0FgzJse8OcNmiYoUmuVSrBeAdzm7n/v7he5+3vcfX+gEzgG+DTwX8CzFXp+kXGZ1aH1MVJ5g8m8u5J5gCvvzNJXgN2nJSZ8jjgkV+P11KbyuitNDZy4JY8WOOXlzVd6V5sOi9SHSiVYPcDDwx909x53/4W7X+fu73X3Ayr0/NJEogiwOlqM3ryCXtm+KPratDbjquVK5i9fmiVfYsLlx+ttb6vtGc/o1XPbQroyRiat5GoyFj9a4PX7N1+CddReSX7xeLHWzRBpepVKsJYD+1fo3DIJcQlIaiGwcolokUrqbDW2ZJu7n33hjiyhl/cHm4g4XcfGk1z15Z1c0TnvRFUNnIxCydmac6a3N1+h5GTCmNURsGaLpiKL1FIkVx8ze5eZ7TvkocuBE83slVGcX2RHogi4ZrYHfHGZRhZk+ybb18wMs+adJnjZkvIi/NlTGj+5Go9S6DyzJeTzpyq5mqxf/rnIUXvHbpvPyLz54BS3PKRpgiK1FNXtne8Bj5rZFjO7B/gQcCewxMxOiug5RCqqXdMEpUq6MsbVTThN8LIlWRIB7NQkydV4Rq+e3Kh1V1FZ2GTl2Yc7cd8Uy/6gcu0itRRVgvVpyknW08BrgU8Ab6JcSXCxmf3RzP7FzN5vZq80s4mvaBYZRdyCL4mvyfa1zlZjS5PtifX5O8rJ1ayO8X/sxGm91aDxJFfPbgmZ1RFo3VVMXp04AAAgAElEQVQE3J0/bgjZd6fmDTNaU+X9HTf1aZqgSK1EMobu7tcO/r+ZtQGvAg4FDhv47/7AR4DBiKLfzB6kvBfWR6Nog0gUMiljSzakM9N8c/elepptlOLzd2QxJp5cNbLN2RAzOPt4lWSPwqPrQg6Y3bzJ1aA3HpDi1ocLvO/vWmrdFJGmFHkU6e597n6vu3/N3f/Z3V8JTAFeA3wM+AbwKOUk7ENRP7/IZExvM65Z0V/rZkgTSAVGtgmmpF4+sPHpRKYFxjW5GuvoVX/R2djnXHyK1l1F5ZYH87zpoOarHjjcqQekuf0RTRMUqZWq3KZ39353/7W7f93dP+juhwEdwN9V4/kbQWDaCHcsJhuQpZNGQZUEAfW5HZlsX5veZnzprsZeh3XFnVlK4cQKWjR6chWGzlObQq54g5KrKP3PU0VeM695C1wMmtJqhA69/bqGi9RCzeZBuXvB3e+v1fPHTUvSyGlrC6milqTRrz5XMZm0kSs2bvBz1bIs/UWYM4FS7I2eXAE8sTFk3rSAIGiu6aKVtHZreS1bQu8pACe/PMUdj2kUS6QWtNAkJj78uhb6CpMLxuIatFRbIoB8Awe+Y9WapKETAKmcL9+Vo6ffJ7SJcFyvU+NJrp4ZKGrxf4/Wuqso3fpwntMO1PTAQSrXLlI7SrBiYlrG6GuC9Rr1oKs14Mt3N/bUrbH46JGtZHXzc7smmwwkjIabknrt3Tk29oXsNm38hQbimlyNx8bekGSgohaVcOfvi5y4rxKsQTPaA/ryrthBpAaUYMVEMlGeTy07Ntkgrb1F89YB2tKQb7Dgv950ZoKGWod1w8oca7eF7DGteUauYOyjV315Z1u/c9HJWncVtcEkor1F0wOHUrELkdpQgiUyTGCG0ormKyVeC1NaoKdBkvn+ovOXzSF7zgjG3XeaIbkqlpxntoR8QUUtKuLO3xeYv5+KWwz3loNT/PxBTRMUqTYlWE1kPGsERKTyGiWJLYXOBbdm2XtGQKDk6iXcnSc2hlzxxkzD/M7rzaKHC7zxwHStm1F3prUFFEqNcyNHJC6UYMVIa9LITrLQhYxNI66NkcqIc4IQBXfn/EVZ5k0ff/W2OL9347lh9dSmkF07A1IJJVeVUAqd9T3hhCpWNoM3Hpji1oc1iiVSTboaxcinjmtlU5+C/rGYbOA2pdW4RoUuSCdMFRUrrCVpsb67fMFtWXbuDEgnlVyNZO3WkM5W46xjVdSiUn71VJHX7KHpgaN588FpbnlQ67BEqkkJVox0tJiKDlTJlJZ4B71R+cTRLWzJ6X2opK5MfJP5y5Zk6Ww12tNKrkayqS/EgXNP1LqrSlr4UIE3HaTqgaOZ2lr++9yqa7lI1SjBEhlBIjCUy8K0NqN3kiV+tfZv++K639hVy7JAeY3HeDRLcpUtOFtyzsWnKLmqtIfXljhgzvi3BWgm/5+9Ow+Tq6zyB/49t9Zb1Xt39p0EZFHZ2gWUrGRPGB2XcRkdfqg4zsi+ZCEheyBBQNBxxqgjOqPjNjoQshMSwgCjBkFcUCD7nt6XqlvrPb8/bjc0Tae7q+reqrucz/P0E6iuqn6r6q1733Pf8573b94TwONS7EKIopEAy2GCPkLSgYMx4UyyIH9wCgkanPgeP/pMAq0a57zmxcnBVS4yWcbxVh3rpGKg5f58OosLh/oc+T0qpoWXBLH5T5ImKESxSIDlMHfPCKMxJgGWKC6dpc8JQyZrlGMfV+Ot4CrXioHr5kvFwGL479+n8PFLpXrgQKIhQjQInOnQS90UITxBAiyHiQSl6MBgFTqgC/pINhwGUBkmyd23WEAhJBxQIZSZsXSLhgk1uZVj90pwBXRVDKzKveiHyM9vjmbw/nGSHjgYn74ihJ/8TtIEhSgGCbAciAjQ9fwGY7IeZvDKQ4RH9jmz+ICZ7poeRqsm67CsVB4mPLzX/n1txbYEhpd7q9x4XhUDp0jFwGJ47WwWk+py39jaq6af78dTr0maoBDFIAGWA9VFFTRJuXbLRYNAvMACD26gKATJELRWWRAFFxOx2oanNAR8RjXTXDh59irXioGAVAwspl/8PoVPXCbpgYPl9xHOr1Pw6ulsqZsihOs5LsAion8iokNElCCiF4nomgHuHySi1V2PSRLRUSK6udd9PkZEf+76/Z+J6KPWvorC3D4tLCXEi0BRCHlOFLpOyO+MFLZSKiSQsHtfi6cYLRpjWLl31l3lElzFUoz2BONeqRhYVC8clv2vcvW594Xwny8mS90MIVzPUQEWEf0dgEcArAdwOYDnAWwjorH9POwnAOYAuBHAuwB8AsArPZ7zKgA/BfAjAJd1/ftzIvqAFa/BLETG7vX5kHQtkaslM8No6JTF0V7EzFixTcP4agmu+pLOMk616VgrFQOL6kBj1lgLqEh6YC4uG+XDyyeyeS8zEEIMjqMCLAC3A3iMmb/DzK8y800ATgH4Sl93JqJZAGYAmMfMu5j5MDP/mpn39rjbrQD2MPO6rudcB2Bv1+22NaxMwdlOOUCK4gj5CZkC4ysJ7J3p3q0aRlXmNpD1SnCl64xDTTrWL5CKgcX2i5dT+LikB+aMiHDNeX7876FMqZsihKs5JsAioiCAKwHs7PWrnQCuPsfDPgLgtwBuJ6LjRPQ6ET1KRGU97nNVH8+541zP2dDQgPr6+jd/Nm3alPNrMcMtU8OSslUESgEzhfnYtGnTm33LLn2tmxogWZNmIZ9izIYUw2D72QO7NQR8hEjQG8FDLsEVM+Ngs44181T4PVT0I1c9+1omY96g/rlDGXxogqQH5uMzVwbxo/1STVAIKxE7ZPU6EY0EcALAFGbe1+P2ewF8lpnf1cdjtgOYCmA3gNUAqgB8A8ArzPzxrvukAHyRmX/Y43GfB/AdZg71fs76+nrev3+/mS8tbyu3aaiJEMKB/E7uTr7KnItCZk4aOnX804dDqI4U/1pEfX097NLXACPQXL5Vw/iawkoiu7nfFdLXmmM6/D7CndOLW4HuXP0snWXcs0XDpLrcPm+nfr65fnZHmrOoiyq4bZpUDBysaDSKWKzw/nGgMYuvP5PANz4ms+L5+uj3OvDjz5VBdenFEyJ6kZnrS90O4V2OmcHKkwKAAXymKzVwB4CvAvgYEQ0rbdMKd8+sME7LpoGWUgOEf/1fWRAMAL6uaoKy6bA11CBBs9Gs9PKtGsZ5ZN1VrsHVyTYdFWGS4KpEfvxiCp+5QtIDC/GxS4P471dkFksIqzgpwGoEkAXQOzAaBuD0OR5zCsAJZm7rcdurXf92F8Y4neNz2kbAJwNeq6kB2GrQW2pDyxWc7ZD3wwohP2yT9rt+p4aqMHliv6tcg6vGTh1+Rcqxlwoz4/+OZPDB8ZIeWIiPvTeIX7wsAZYQVnFMgMXMKQAvApjZ61czYVQT7MtzAEb2WnN1Qde/R7r+fSHH57SVQga8UnRgYD6FUKRlMY5w29Qw4gUGAdLv+qYQwQ5dLZlhdCQZNVH3z17l2hfbNB3JDLBstgRXpfLyiSwuH+WToiIFUoOE8TWyJ5YQVnFMgNXlIQDXE9EXiegiInoEwEgA/wYARPRDIvphj/v/GEATgO8T0SVE9CEYZd5/wcxnu+7zCIDpRLSYiC4koiUApgH4erFeVCFumxq2/Qalwl0qQoQ2TVJT++LEIKO3e7dqGOuB1MBcg6tY0tgLbNU8Ca5K6ccvpvCZK9+xPFrk4UtXhfCdFxKlboYQruSoAIuZfwqjfPoyAC8D+DCMEuzds1Fj8VbqH5i5E8C1ACphVBP8GYBnANzQ4z7PA/gUgOth7I/1eQB/x8y/tvjlmKZaJbTE8xvwymyCyNWSmWE0xmQWy43W79RQrRJ8Li/Jnmv/S6QZpzt0rJO9rkoqqzNePZPFxcMLK7QjDJeM8ONAk26b1GQh3MRRARYAMPO3mHk8M4eY+cqeFQWZeSozT+11/78y8yxmjjDzKGb+Z2bu6HWfXzDzhcwcZOaLmPmXRXo5plh0bRjNcTlAiuIgMsp2y8ypu6QyjPY8UgOdJtfgKp1lHGvVcZ/sdVVyzx7IYMokWXtlpr99bxC/lGIXQpjO3WdSjyAilIUInUlZiyWK497ZYZxuLyxNUPqdvazYpmFslbtTA3Ptc9mujYTvW6DmtNGysMZ/vpjCZ66Q9EAzfeKyIH72kgRYQphNAiyXWDYrjDNSsl0UyZuzWHkG9cJeHtitIRokV2+Ym2twpeuMA0061i+QjYTtoCPBaNN0jMrxIoDoXyRIGFOt4K9npNiFEGaSI5VLEBGiBQx4ZTZB5Ore2YXvwyb97p1Ksfl7Q4wxtNy9s1c5B1dsBFdr5qoI+iW4soOfv5zCJy+X2Ssr/OPVIXzrOSl2IYSZJMBykeUFDnhlsCtyQUQoDxHaE1LwwiwKAXqR46uTbTpGVUpw1Y2ZcbBJx5gqBWpQgiu7eOKPKVz37kCpm+FKl4zw43irLtVhhTCRBFgu0r0Wq6PAAa8Qg3XPrDDOdspJ2Sw+ImSK/Hb6fQQ14M5AIt/galSFgpunhC1qlcjVa2ezGFutICSziZb5fx8I4fu/lrVYQphFAiyXWTYrjDMFDHhlNkHkgogwJEo4K6mCpiACskUOsHIdsjpl9iqf4Opws47h5QpumSrBlZ089psk/t8HJD3QSvMuCmDHX9LIFnsKXQiXkgDLZYgINRFCU0yCLLPINdP+3TVDRUeSocuJ2ZTvjvS3wuXzORxp0TGkTMFt0yS4spN0lvHKySwuHy3l2a2kKIR5Fwew5c/pUjdFCFeQAMuFFl+rokXjkiyWdyN5Fwc2ukrB8TaZxXI7J8xe5dOPjrZkURNRcLsEV7bzq1dS+Oh7g6Vuhidc//4Qvv/rZKmbIYQrSIDlUiMrFJxsyz80cMtg1y2vw+5umhwGEaClpeBFIRhGmqDIT77BVWWYcOd0Ca7s6L9+l8Knr5AAqxjKw4Tzan146Xim1E0RwvEkwHKpW6eGkdYZqYwEWaI4Vs1RcaLAWSzA2/1OZ4bPpkdlu89eFRJc3TVDtaBFolCvnMxgYp0PEanmWDS3Tw3jwT1Ssl2IQtn0VC7MsHquimOtkrYlikNRzCl44WXMgOxpmzsJrtzpX/83ia98SIpbFNOoKgXlIcJfZONhIQoiAZaL+X2EyjChOS5BliiOu2ao6EwxMllJFcyHzkagajd2nb369iejEly5VGtcR1OcMbHOV+qmeM5d08P4msxiCVEQCbBcbuksFS1xltKromhWz1VxtMCZU8B5QZbT2ut0+b7fR5qzqFIVCa5sbtMLSXzhA7L2qhTOq/MhqzMON8kslhD5kgDLA1bO8WaqoBPb7AZBP6EiVPjMKSCfoR3YcfYqn35h7HNlVAuUghb2lswwnjmQwawLA6VuimfdOS2MB/fKLJYQ+ZIAywPUICESILRIqqAoEjNnTqXfiZ7yD6501EUV3CHBle39x2+T+PsrgyApqVkyl4zwoynGOGVC4SIhvEgCLI9YNltFswkD3nzXPAjvWT1PxZEWc07Odu9zdm+fG+R77GFmHGzSMbRM9rlygqzO+O/fp/GJyyQ9sNQWzQjjvqe0UjdDCEeSAMtD1sxTcbhZBry50Jlhw5oDjhDyG0VWGmPe6HPCOvl+9jozDjTpGFmh4DYJrhzhf/6QxoJLAvBLOc2Su3SUH51JxusNshZLiFxJgOUhQT+hLko43S4D3sFKpI1AQeRnyUwVHYnC9mPryQt9zk7ssP4q7+BKZxxo1DG6UsEtUyW4coKszvjuC0l84YNSmt0u7p2tYs0OmcUSIlcSYHnMXTNUZHWgM+neAa+ZbdLSjH+UfVgKsna+kSrI7M4+Z1Z7UhlGQK7av6mQdOSsznijScfquSpuniLBlVP81+9S+NtLAwgH5HtgF+NrfaiLEn57NFPqpgjhKBJgedDKuWGc7tCRLnCvom52G/CaKZ5mVIblZF8In0IYWaHguImLpd3Y52IpRpksOwFQ2OebzhozV+vnq1CD8t11inSW8Z/7U7j+/XJBy26WzlSxfpdm2kUyIbxAAiwPIiKsm6/iULMO3cRZBTsMes1uQ1Y3UitFYW6bFkZAIbRq7gqyzGxDZ4pxi8dnWwo9jiQzjEPNOu5fqMr31mG+939JfK4+KLO4NlRXpqB+jB/bX02XuilCOIYEWB4V8BHGVik4YlLRi26lDLTsMOAW53bvHKOSpVnrsQB39TevB/OFvp/xFONYq46NC1UpkOAwLXEdT/4pjU9fIVO4dnXb1DAe2ZdE0sTjtxBuJgGWh908JYzaqIJjreZXCJJgR/Rl3XwVh1vMmzntVuz+Jv3bPGYEye0JxpkOHRsWqlCk7KfjrNquYfks+ezsLBIkfPWaEB54WjYfFmIwJMDyuDunhxEJmFdZsKdizi5Y8Xck39x8PoUwrlrBoSbn9jfpa+Yw6/NqiuloS+i4b2FENqZ1oD+eyiCWAj4w3l/qpogBLLgkiD+dyuJQk5RtF2IgEmAJLJmpQiHgbIc1O7Z3D6SsGJhaOaiOp4GIVLMy3U2TwxhaZs3MKWBtn7DqeWMpIGrDggx2/86ebteRzgJr5kVMeT5RXFmdsXizhrXz1VI3RQzShutU3PF43JMXhYTIhQRYAgCwbLYKBtDQaU2Q1c2sYKsYsxUdCZYSzxa5o2vm9IxFQT1gfh+xsr+1aow7p7u7r5n5eTAzjrVkEfQZa/uEM339mQQ+c2UQw8plKOIUY6t9mHtRAN9+PlnqpghhazInL960vGtDwbMdOoYW4YTXe7A10KamxV73ksgwyqVisGWWzDT6W2Onjroy6/pbz36T68a5xepzGZ1tu6H1tz8ZLWjDYbPfQ50Zh5p0DC1TcIfLg1I3+8uZLPYfzeLHn5fP0Gm++MEQPvFYJ2ZfGMCEWl+pmyOELUmAJd5m+WwVa3doONWuY0RFca8q2rFwgKzpsNby2SpWbtPQHNdREyl+UG8HTki1yTXIsup9zmQZB5t1jK1SZHbZweIpxq2/iuOHn43KMdaBiAgPfySCf/pFHL+8oUxK6wvRBwmwxDssm63i/qc0HGvJYnSVIidAYamVc1Ws2KqhGcUJsuymIwmUhez/HesOmvoKtIoRuGopxvE2HfctUGVA52DMjFt+GceyWeGiZEoIa4yp9uFLV4WwbIuGDdfJGkghepMAS/Rp8bUqHnw6gYNNOibUKlA8FmRpaUbYpilbbrRqnooV2zQ0xnTURb016GqO61gzzznriEoxC9gS19GWYGy8TpULPg738N4ELh7uw4fPC5S6KaJA1707iGfeyGDLn1KYf4nsYSZET94ayYic3DE9jNFVCt5o1E3dHNYJWuKMO6ZJClIxrZqrIpOFpYUv7IjZKF8v+nayTUcyA6xfIGXYnS6jA6c7GLdOkcWtbnHfAhXfeSGJ35/IlLopQtiKBFiiXzdNDmPDQhXH23S0at4Z+KayjKgD0rbc5t45KvwKcKwl64i1SYWKpxiqbAXQJ50ZB5uyiAalUqBb6Dpjw0KZhXSToJ/w2GeiWLRZw5Fm2R9LiG4SYIkB+RTC/QsjSKS9M/AVpbNkpooqVcHBJh267u6+drZTx9KZMlPaWzLDeKNRx6hKBXfNkODKLYJ+kuDKhaoiCr77qSi+/LM4mmPeuRArRH8kwBKDdu8cFbVRI2UwkXbvwDeVYVlEX2J3TA9j5RwVbzS5t68xM5gBv/S1t2mJ6zjZpmPjQhU3TZbgUwgnGF2l4MG/UfG5H8UkyBICEmCJHN061UgZPNtpDILcOJvVGGPcJfvrlJwaJGxcqOJ0h275Btil0KoxqlQJrrp1bx6cygL3LYxAkXVpQjjKJSP82LhQxWf/I4bT7e47ZguRCwmwRM4UhbB2fgQVYcKBRh2xpLuCrFSWHVE22wsUhbB+QQQKAYeassi6KGWwVWPcPUMCecCYNX6jUUdNVMHy2ZISKIRTXTLCj3/5eAT/8KNOHGyUNVnCu6RMu8jb7dPCYGas2p5AQ0zH6ErF8elO3Wlbwl6WzFSRSDPu3aahLkqoUp19bSiVYfgV2cgaAJpiOtoTjPsXqlJNUQgXOK/Oh8c+U4YbfxbDVz4UwryLpYS78B5nj1JEyRGRsVHsHBXHWo20Qd3BEUp7glERlkGeHYUDhI3XRZDKGLNZmaxz+9npDt3zMzW6zjjcnAWzkRIowZUQ7jGiUsEvbyjD7tcyuPPxuOsyXYQYiARYwhQhP+G+hRFUqYRDTTrOdjhzfVaLxlgkaVu2tmy2ipVzVRxt1XHGgf1MZ0ZWNyqqeVVHgnGgScfICgVLZ3k70BTCrQI+woMfiWDhJQF87Pud+J9XUo47XguRLwmwhKlunRrGhusiCAcIB5uM4gROOqAyQxbXO0DIb2wdoAYIB5p0dDro6ujpdsawcm8eenVmHG3JoiPJ2Hidiq9KlUAhXG/KpAAe/2IZXmvI4mPf78Tzh9KlbpIQlvPmWV5Y7s7pRqAV8huB1ul2+wda7QlGuRS3cJQ7pxtVLTuTxqa0yYy9+xgzQ0szbp3qvcCiM8k40KhjaJmClXNls1khvCTkJ9w9Q8WmT0ax7dU0Pvq9DvzqlRRSNj9mC5EvKXIhLHVnV7nzh/ckcKhZR9BHGFFBtlxv0RTTsX6BpCs5DRHh3jkqsjpj5TYNWQZGVSq23MvsbCdjaJm3rmvpzDjeqsOvEDZeJ4GVEF5WV6ZgzbwI2hOMn/wuiU881olx1QoWXBLE5Il+hANyfBDu4K0zvU1t2rSp1E2w3G3Twrh/YQSLZoRxrFXH4eb+Zxv2Pf7dIrYObxbm8Nrgz019z6cQ1syPYMUcFSfadBxtMaesu1l9kZnRmWTc4aE91to0HQcHOWtlh74obbBPG5zAru+TXdsFvNW2ijDhxqvDePyL5bhlShivNWTx+R/F8PHvd2Dltji2/CnliMwXIc6FpPPmpr6+nvfv32/2c8Ls57S7dJaxZkcCqSyjLqq8o3Lfuhuuxj3//nzR2nO6XUd5mHCbjVK3itEv3Nz3tBRjzU4NChkzWvnOmprVF8906IgEyHYB1rgLrzT9u5bVGUdbdESCNOhqiXboi9IGa9sQjUYRi8VMf95SscNn1Re7tgsYuG2ZLOPPZ7L4zZEMfnc8i7Ndm8wHFMKYagVDywhDyhQM6fq3PERQA4AaoK4fwO8jENGLzFxfrNclRG+SIihKIuAjrJ6ngpmxflcCZzpKu/A/6IOtgitRODVobFLcHWiNqco/yDKDT4HtgiurnO5grJijSrqPECInfh/hvSP9eO/Itw9PUxnGsVYdDZ2Mhk4dp9sZfziZRmeKoaUBLc2Id/13xkUb0gvnkhmsHNXV1fH48eNNfc6GhgYMGTLE1Od0OnlPgMOHD8PsvtabvM8Dc/t7VIx+Nhh2eJ+lDda2wS59zSx2+Kz6Ytd2AcVr2+9+9ztcccUVlv8dIV588cVGZn5Hp5YZrByNHz/e9Kl3O0/nl4q8J5IiaBduf4/s8vrs0A5pg7VtsMNrM5NdX49d2wUUr23RaNS274FwFyI60tftUuRCCCGEEEIIIUwiAZYQQgghhBBCmEQCLBu48cYbS90E25H3pDjkfR6YvEfFYYf3WdpgnzY4gV3fJ7u2C7B324QwkxS5yJEVZdqF6Iud8+iFe0g/E8UifU0Ui9u2BBD2da4tAWQGSwghhBBCCCFMIgGWEEIIIYQQQphEAiwhhBBCCCGEMIkEWEIIIYQQQghhEgmwhBBCCCGEEMIkEmAJIYQQQgghhEkkwBJCCCGEEEIIk/hL3QAhhBBCCCFEcWkpxjeeTeA3RzO4eJgPd01XUR6mUjfLFWQGSwghhBBCCA9pjev4xGOduGS4Dz/7hzJc+64APv79DhxtyZa6aa4gAZYQQgghhBAeoeuML/00hrXzVMy/JAhFIUyeGMD3Pl2Gf/xZHMkMl7qJjueoAIuIJhPRE0R0goiYiK4fxGPeQ0TPEJHW9bh7iYh6/P76rufq/RO29MUIIYQQQghRZD/4bQozLgjgstFvXyk0ukrBTdeEsHanVqKWuYejAiwAZQD+COAWAAN++kRUAWAXgDMA3tf1uLsA3N7rrnEAI3r+MHPCvGYLIYQQQghRWrEk4+cvp/Clq0J9/n7uxUEcbtZxqElSBQvhqACLmbcy81Jm/gUAfRAP+SyACIB/YOY/dj1uA4Dbe85iGU/Np3v+WNB8IYQQQgghSubbzyfwTx8Owaecu5jFkmtVPLRX5hkK4agAKw9XAXiWmXvOdu0AMBLA+B63qUR0hIiOE9GTRHR5MRsphBBCCCGElZIZxlOvZTD/4kC/97t4uA8NnYyGzsHMZYi+uD3AGg4jPbCnMz1+BwB/BXADgL8B8GkACQDPEdH5fT1hQ0MD6uvr3/zZtGmTBc0WXrVp06Y3+5b0NWEV6WeiWKSviWLp2dcymUypm2NLT/wxjY9fGsTbk7j69uWrQ/je/yWL0Cp3ImZnVgohok4AX2Xmx/q5z04Ax5n5hh63jQVwBMDVzPxCH4/xAXgZwB5mvrn37+vr63n//v0mvAIh+ldfXw/pa8Jq0s9EsUhfE8USjUYRi8VK3Qzb+eRjnfjep6KD2uuKmTF/Uyee/FIZlH7SCb2OiF5k5vret7t9Bus0gGG9bhvW43fvwMxZAPsB9DmDJYQQQgghhJOcbNNRHsKgNxImIkw/34+nX5fZwHy4PcB6AcA1vUquzwRwEsDhvh7QVfzivQBOWd46IYQQQgghLPaf+5P4XH3flQPP5R/eH8IPfitpgvnwD3wX+yCiMgCTuv5XATCWiC4D0MzMR4noPgDvZ+YZXff5MYAVAB4jorUALgCwGMAq7sqNJKIVAP4PwOsAKgDcDCPA+kqRXpYQQgjheifbdCx9Mv622xQCykOE26eFEfBJGpIQVmBm7DuQwZ3TctvidUiZglTGKO0eDcn3MxeOCrAA1APY0+P/V3X9/ADA9TD2sGRurf8AACAASURBVJrY/UtmbiOimQD+BUbaXwuABwE81OM5qgBsglH0og3ASwAmM/NvLHsVQgghhMcEfITxNb633ZbVGZ1JxqrtGvSuJeHRIGHRjDD8EnAJYYpXz+i4eLgvr7VU8y8OYMufU/jk5bnNfnmdowIsZt4L4Jy9g5mv7+O2PwCY3M9jbgNwmwnNE0IIIUQOfAqhUiVUqsb/MzNiKWDldg1ZHfD7jD15IkEJtoTI169eSeGj7+m/NPu5XPfuAP75v+MSYOXIUQGWEOeSzjLaNMZ3X0girQPMRuqJ3wfceFUIlSr1u6meEN3SWUarxvj2c0kkM4xsH4VWfQSoAcJNk8MoC2FQJW+FEAMjIpSFgLKQMdOVzjI27E4glWEEfISlM8MIB+T7JkQufn0kgyXX5pYe2K0qoiCTBTqTjDJJExw0CbCE48SSjK/tSSCZeWvk2z3gDfoJagAgAnQGMjrwr88loaUZOhuBV0WYsPjasAyKBWJJxoN7Ekj06kuRICEaItRG+w7MszpDSwMP7zUeywwEfYQlMvjrEzOjIwl869kEtIwxaB6MkJ8QCQC3TAkj6Jf31YsCPsKoSuOzT2UY63ZpyGSN7+g9M8NSPlqIARxtyWJ0lVLQd2X+xQFslTTBnEiAJWwvkWZs3P3WIDjoI9RECOHAYItgvnVQYWa0JxhLn9TgV4AVc1TJ8/eQjgTja08nkNbf6kvVEcLwQfclg0/pvsr+Vt/pHvyls0BthHDXDNXUtjtFLMl4aG8CWvqtIIrQFSwFCUPDgF+hAS9wMDNSWSCWYqzZaaSLdT9XpUq4c5oMrr0m6CeMqTJmtmJJxrKtGpiBoeUKbpua39V5Idzuf15J4yPvCRb0HPMvCeCO/5E0wVxIgCVs6aE9CTTFdOhsXMGsjeY+CO4L0Vv5/qmMcYKuCBGWzvLmYNjtmI3gvC1hzDKF/IQhZYSg3/wdKroHf8yMphhj0RNxDK9w98CPmfHw3iRa4vqbqZRBH6FKJQwtGziI6g8RIeQ3PrOayFu36zqjLfHW4DrkN9LGZIbLW6IhQjTkg86Msx2MxZvjiMqslhDvsPdAGv/4ocICo9qoglaNkdVZllsMkgRYwhaYGQ/uSaI5roPZqCI1psAp7YEE/YTzan1oihmlg9fNVyVt0AWYjVmq5rgx4q9SCeOqlaJ9tkSEujJCbZRxso2xfGscq+e6p291Jo2gNdM1CxgNEkZWKkU76SqKMetY3RV0JdKM1TuMGa6ykBFsueW9FgNTiDC8wvi8Y0nGPVs0+BRg+WwVIQm6hcd1JhlhP5lyAeoD4/z4zZEMrpqQX7EMr5EAS5TUg08n0NQVVJWHCGOrFShFHhzVRhVEgoxFT2i4f6EqVz8dKp5irN9lDLQrw4TxNcULqvpCRBhVRYilGHc/oWHtfGcO+LoD1hbtrVnAoRbNAuYjHCCMrTbSxjq60n8VApbOVGXfFo+JhggTQj6ks4w1XUH3iAoFN09x7yyyEP3ZdyCNKRPNGerPvySAn76UkgBrkCTAEkX39b0JnO00gqqyEgVVvakBwugqBUue1LDhusjADxC28cBuDU1xRtBHGFmh2G5NXTRIOK9WwT1bNIyrVnDTZPsP9pgZ9z+VQHvCmKWqVO3xPR1IeZhQHvYhq3dVnssy6qIK7pxu//dcmCfgM4JuXWec6vBGuq4Qfdn5lzRuNumc854RPizfmjXlubxAAixRFOksY+0OY8CjBghjLU7/y0c4QBhapmDFVg2r5smaLLu7b5eGVo1RqRImlHi2aiA+hTCpTsGBRh3f3JfAV20YZPVOrayJlH4WMF8+hTC6isDMaOxaD1elEpbMlO+1lyiKUYFQZ8YZCbSEBx1s0nFenW/gOw4CEWFUpYLjrTpGV9kjg8HOJMASlnpgt4bmOMOnAMPKFYRsklZ0LuVhQkeS8eDTCdwhV71tacNTRp+qiRAmmnTiKAaFCBNrFbzRpCOTZdvMtDEDy7fEkbZJaqWZiIyiJkPKgJa4jkVPxFGpEpZKoOUpChFGVBgB9+muQGtkpYJbJHVQuJgVgdCciwLY8Zc0vvBBqSY4EHuPdoUjMTPW7tCw6Ik40llgfI2CsdU+x6w/GVFBONOhg3lwe/WI4nj0mQQWPRGHzsDEOh+qI847fCkKYXy1kS5oF2c6dQyvUHBerQ+1UfcEV71VRxRMrPPBR8CiJ+LY8JR9PgNRHESEERUKJtQqaI4zlmyOI56S47xwp11/TWPmu8xdLzV1UgB7Xk+b+pxu5bwRirAtZsaq7RoWb9agBozZhboy5w3YiAjDKxSs2ZEodVMEjH61YquGs506JtQqqI06+7AV9Bv7uK3ZYY8Bvo8IAZvMphVDd6ClsxFofe1p+Z57jdKV6jS2WsH6XRqWbYkjM8jNr4VwiqdfT2PaJHMT1SrCRuEmXZfvy0AkRVCYYt1ODe0JxvAKBSMqnD0ABoziG2c6dOg6226tmJd8Y18CR1t0jKxUEA06v191q44oONSURSLNCAekf5VCbVRBTYRxttNIGRtVKdXmvManGMUwUhnG8q0aQn7CijlS5l84n64zOhKMKgsyPS4f5cdLJ7K4coyEEP1xz4hFlMTDexK4+/E4gj4jbSsadM+JaWSFgtUyi1UyG57ScLJNx8Q6xVX9qtvYagUrt9tjFsuriAjDyo2UscYYY+mTcaQycmXWa4J+woRaHyrDhEWbNUkfFY736pksLh5uzRrlWRcGsPMvkiY4EAmwRF50nbFsSxxtCcbEOgWVqvu6khokaGmWtVglsHKbhmQGmFDrs31p8Hz5FIIaIDy0R4L4UlPI2KZhVKWCFds0rNymyffeg6IhwqQ6H7Jd6aOPPCPfTeFM+w5kMNmk/a96qx/jw2+PZSx5bjdx36hYWO7hPQks2qxhaJmCkZXOW2OVi+HlsharmJiNWYRIEBjuglTTgQwvN1JRhT0EfF0zGaoxk7Fxt8xkeFFd1JjVbIox7nlS1mcJ53n+cAZXW7QhsN9HCPkIsaR8L/rj/hGMMNXq7RpaNMakOsUTa0eiIUI8LQeRYmBmLN6sYUiZgioXzoj2hYhQFiI8KIUWbCUaNGYy0lljJuMb++Tz8ZruWc0RFQqWbdWw1iZFaYQYCDOjPcGoCFs3RpsyyY99ByRNsD/eGMWIgum6UdI2HABGV7l71qq3chkAW46ZsWizhlGV7lxv1Z+hZYSGmMxi2dGQMgUTahSc6dCxfGtcKmd5UNBPOK/Wh5AfuPvxOB6WlF5hc4eadJxXa+3wfvr5ATz9uqQJ9kcCLDGgVIZx92YNIyq8M7PQU12U0CgDYMt0z1yNrvTGrGhvRJJuYWdKV6W5uoiCxZs1PCBpg55UqSqYWKegLWGkMaclbVDY1LMHM5g80Zr0wG7nD1HwWkPW0r/hdFJjUfTrm/sSONyiY2KtAp9Hy5V3z9Yxs6dm7opl6ZMahld4M7jqNqycsH6XhnULIqVuijgHNUiYNMSHMx06lmyOY/U81VP7h5khbeIM4Jd/FhvU/b79yahpf5OIMLKSkM4aZd2jQcLy2appzy+EGZ49mMF9C6ztl0SEapXQEtdRbUEpeDeQAEuc06PPJHC8VcekOsW1ldwGqyxEeGhPEndMl31yzLRiq4aaCBU9LXCwg7NuZg7S+uL3EdyefZbre97N6vc+V8PKFaSzjGVbNFSqhKUzZYA9WASgKaYXvFl4Ln2p533N6ksBn5E22KbpuPvxOEZUKrhtqpwbhD00duoYUmZ90DN1UgDPvJHBR94btPxvOZEEWKJP3cHVxLrir7cqxZXJgVSrhFNS7c1U63ZqCPpRlBL/+Q7uez/eyj5nBPEJ3D7NHQO1Qt/z/p6n1EFXwEeYWOdDc0zHoieM2ayQ39sXoQZjRIWC9gSjPMQI5vl+FdKvzA62KlUFFWHGyXYjbXD1XBV+mdUUJXSqTS9aBd5p5/vx4J6EBFjnIAGWeActxThWxOAq3xOmFVcmz8XvI2QlvjLNQ3sSSKQZY6qt2Qixm1mD/J7PZ1Vfq40QjrU6u5OZ/X4P5u+UMtiqiSqoVBkrtmmoDBOWyGzWgNbOV7F4s4ZJJbh415NZfYiIMKqSkMow7tmioSJMuGeW9ANRGs8eTFu2/1Vv42p8ONri7HOWlSTAEm/TnVtudVqgFQNfoPRXtsXAUhnG6XYjgLeKlQN9q/qaohCcmiVYrMBqoL9diu+/TzHSxRpjOhZvjmONrM3ql08hjKpUcKxVx1iLL7AMlhnf6aDfmNVsieu4+4k4RlcquHmKO2ajhXPsO5DBohnF63dDy40qq8PKZR1Wb/KOiDfpOmPJkxom1CpQLCpo8eWfxYoy+BX2xGysXZlQa83Va6v7V++/ZTaFgKyDFmMV8/0ejO72lKJNdVEFY6oU3LNFKg0O5NapYYT8xgJ5OzGj71RHFJxXq6ChU8fyLVLaXxTX8Vbd8syQnqaf78ee12U/rL5IgCXetHSLhrFViiVXX50+8BXmWLktgeEV5lektNtAP1/lXeuwnMDu73cp+kTAZ2xQrKWBZVviYJbB9bksn62iOc62LHdeaN9RiDCm2ochZQoWP6lhw1MScAvrNcd0VEeKO3s+TfbDOidHBVhENJmIniCiE0TERHT9IB7zHiJ6hoi0rsfdS70unRPRx4joz0SU7Pr3o5a9CJtauU1DbYRML5VdqoGv3Qd/XvS1pxMgMoo5mKXUgZXZf7siTGhL2G/A2ZuTvl+lmNUaXqFgSFTBXU9oePQZZwTMpbBuvoojzbptA9FC+004YATcGR1Y9EQcibQ9X6dwh+cOZfChCcVd+TOsXMFZKQDWJ0cFWADKAPwRwC0ABrwkREQVAHYBOAPgfV2PuwvA7T3ucxWAnwL4EYDLuv79ORF9wOzG29WGpzQoZH41t1IPwkr998VbMlnG2Q4dIyvN62N2+XzNbIdPsX+5dru87/koZqClBgmT6hSc7tCxfqfMYPTF7yMMr1Bwsm3wnb4U6+wK7TdDyhSMr1GwaruG1ds12waUwtmKscFwX8ZWKzjSLJsO9+aoAIuZtzLzUmb+BYDBhMyfBRAB8A/M/Meux20AcHuPWaxbAexh5nXM/CozrwOwt+t21/vmvgRaNDa1rGepZxV6sks7vG75Vg3jaszpY3bqX17jlve9WH1IIcL4Gh9AwNInZT1OX26fFgYR0OGQmdt8+41PIUyo9SESJCx6QsPX98rMpjDXa2ezOH9I8Yf1084PYI+kCb6DowKsPFwF4Flm7nn5cAeAkQDG97jPzl6P2wHgastbV2LMjMMtOsZXu29WQdjH+l0aysNkyto+u/Yvu7ZL9K9YgVZdVMHwcgV3b9bwjX0ysO5txZwwznTogy7wUupqsYX0m4owYWKdguY4SxEMYZpYkhEJUkm2Ppgy0Y+9b0ihi97cHmANh5Ee2NOZHr/r7z7D0YeGhgbU19e/+bNp0ybTGltsy7dqGF1pTsVAO88q2LVdfdm0adObfcsNfS2RZrQnGHXRwg81Tvoc7a5nP+tsbcC6G65+82ff49/t8zFufv+Lcfwy1uMoONmme6rowWCOaUSE1fNUHHHYnjr59hsiwugqxSiCsVnD156WoNsMPftaJuOtGZX/O5LBVeNLs/NSTVRBi8aS+toLOfUNIaJOAF9l5sf6uc9OAMeZ+YYet40FcATA1cz8AhGlAHyRmX/Y4z6fB/AdZg71fs76+nrev3+/ia+kNDbu1pDMwJS9C5ww8Cr0imcqw2iMMVbOLd4GkvX19XB6X1v0RBzjawqvGuiFPtbtcHMW6+arRbsSOe7CK3HPvz/f732c8P6bpRizI6fbdWQZWFXE44kdDHRMu/8pDVndWLM0GHbrl/n0HWbGmQ5GIsNYPVeFX/ZQM0U0GkUsZq/+YaUV2+L42/cGcemo0gRZdz0ex41Xh3D+EHvsbVdMRPQiM9f3vt3tM1inAQzrdduwHr/r7z6n4VKpDKMpxp4JrszQkWRTq995wdodGmoi5IngCjCvnT4Css66kO8qxZjNGl6hoDxEWPSEpIj1tPhaFbEUO7baXj59h8go9DGywthDzUuzm8I8fziVxbtHlC64mX6+H0+/JmmCPbk9wHoBwDVE1HNb65kATgI43OM+M3s9biaA/i/pOtjyrRrGmbDuyikDXzPEUozbpr5jQlOcwzf3JRBPM6ojhfUzL/WxbopCSEtBppKzOtCqCBtpYnc/oTk2oLDC2nkqjrUOrnR7qddinUs+/SboJ0zsKum+ZHMcGRvuDybsKZVh+Aim7y+Zi2smBrDvoLfSMgfiqACLiMqI6DIiugxG28d2/f/Yrt/fR0S7ezzkxwDiAB4joncT0d8CWAzgIX7r6P0IgOlEtJiILiSiJQCmAfh60V5YEa3bacwqFJqG4LWBr86lPXg5CTPjaIuOsVUSXOXDbr3Mq59DNysDrZDfKHiwfKuGR6SqHADjAsOoSgXHW509jZtvvxlSpmB0lYKlWzRs3C2zWWJg+49l8L6xpUkN7FYWIsRTLDPyPTgqwAJQD+Clrh8VwKqu/17d9fsRACZ235mZ22DMRo0EsB/AvwB4EMBDPe7zPIBPAbgewCsAPg/g75j519a+lOLTUozOpMwqCGut3pHA0PLCiqc4tY+Z0W5mQHHakdkDrOqTPuWt/bIekAE1AODWqWH4fYT2QZRut+ssVrd8Aq2Az9igOJkxyvsPtrqi8KZ9BzK45rzSBlgA8O4RPvzptKRfdHPUaZyZ9zIz9fFzfdfvr2fm8b0e8wdmnszMYWYewcyruFfuATP/gpkvZOYgM1/EzL8s3qsqnhXbNYwtMDXQiwPfrM6QyavBefSZBNJZRkXYe8GVWbLM8DvqyOwdVs1mERl7JHUkgft2SZAFACvmqDjbObjS7XYPsoD8+s6wcgUjKoxKgw/tkRlO0bcXj2Vw5ZjSB1jTJgXwtOyH9SY5jXvE2h0a6qKFFRxw8sC3kBNwe4JRWUDA4BXMjGOtOkYXkBro5D5mFp1hm4BePo++WfW+jK5SkM4Ca3ZIkAUAa+apONzs7FTB3nLtOyG/McPZlmCs2KpJKWzxNlmdkWVjDV+pXTXej+cPSYDVTQIsD0hmGLEUo0qVgW8+2hOMO6aFB76jx63clsDICgVKnuXFvdzHeivFZpEiN1b11+EVChQCVm+XICvkJ9RGCafbBw6ynDCL1S3X2SwiY11apUq4+wkNWkqCLGF45WQWl44s/ewVAKhBQlpnSWntIgGWB6zYVlhqoNcHvgyYshmzmz28NwEGEJVS9sJDrEoZHFKmwK8AqyTIwt0zVKSzxkXCgTgpyAJyP7eWhQjn1SpYtUPKuQvDszZZf9XtitF+vHRc1mEBEmC53v1PaagI5Z8a6PngStIxBqTrjJNtOkZVejP9VAgr+m9dmYKAIjNZALB6noqTbYNbj+U0uQbpPoVwXq0PqSywbEtczlEe98LhDD443j4B1vTz/Xj6ddkPC5AAy9WyOqMlzqgry+9jlkEv0JEEymVWpl8rtmkYXaXkndYm/Uy4gVVBlk8x1tB6GRENej2W02axuuVTAKMuKvuoeRkzQ0szIkH7jFHeN9aP3xyVdViABFiu1j3wzYcMeg0tcR13z5D1V+fy0J4EfApBDUhwJYRV6YJZhudTwsIBQl2UcLLN3UFWLn0oEjRSBlds06TEvwe9dlbHu4b6St2Mtwn4CARj82OvkwDLpR55JgEiY5Gw1xVyspUNhs9N1xmn2nWMqJD3xyw6s+02Gha5sSLIGlFhVJF72OObEd81QwUR0Ka5N8gCcutDPoUwsc6HWApYuU2CLC/ZdzCNyRPtkx7Y7f3j/PitzGIVL8Aiop8T0Y09/v9dRPQJIhpSrDZ4yYk2HaMqZfaqEKkMI+CT4e653CupgabT0sh7NlDYhxV9e1y1glNtOpIevzK8Yo6K5ji7Pi0u19mskZUKokFg8eY4dBeuVRPv9NzBDD40wX4B1vTzZT8soLgzWJMBvAwARFQL4NcAvgvgT0T0niK2w/Xu26WhJkJ5lcuWQe9bGmKMxddKemBfJDXQGp1Jxk2TQ6VuhjCB2X3c2IxYwbItshfSuvkqjrYOXPTCybNY3XLpR5WqglGVCu7erOGb+7w92+kFrRqjKmK/RLTLRvnw0gkJsIr5yZQDONX13x8DcAhADYDvAFhXxHa4mq4zWjVGTR5fOjcOegs5waYy9lo8ahfMRmrgSEkNNJ2WZlTYaFNrNwxQS8nsY6pPIYysVHCvx1PBFIWwdp6KQ036gMGmG/pwLv0o5CdMqlVwrFXHg09LkOVWR1uyBW2/YyWfQgj6yPP7tRXz0zkKYGLXf38cwH8wcxbAYwA+WMR2uNrK7QmMzDM1ULxF0gPPbcW2BEZVSmpgX8wYzMkmw+5idn+PBgkBhTxf1CAcMILNIy3uXo/VLZeUQUUxil+0JnSs2+ntfuJWzx7I4JqJgVI345yuHu/H84e9PYtVzJH4vwP4JhE9AGAagP/put0PIFLEdrhWMsPI6JxX2pabB735ON2hY9ksSQ/s7dFnEtBZZvas4PW0Lzcz+/g6vEJBQ4yRyXq7z9w6NYwq1d2VBXsbbF8iIoypMirMrdgqQZbb7LPZBsO9Tb/Aj92veXs/rKIFWMy8EcAPAVwB4E5mPtj1q/cDOFKsdrjZym0aRucxe+XW4CrfEyozI6sDQanA+A4n2vS8S/8D7u1rZrBrgQu3DExLzey+P7ZKUgUB4O4ZKgI+oKFTgqy+DClTUB4mKX7hMmc6dAyvsG+20iXDffjT6Wypm1FSRf10mHkjM89g5kd63DwMwE+K2Q43emRvAkE/wS9pbQVrjDFqo/Y9cJXKfbs0VKv5FU8RA2uJM+6cJrOmYnCCfqPIjNdTBQHgnlkq0lmgOS5BVl8qwoSRFUbxC9mfyPnOdugYUmbvMQoRoUoltAziO+lWlnxCRBQlog8R0QwiGt/ffbuCrjVWtMNLTua5H5FbZxQKOYm2Jxh3TpeBbk/MXcVTCgg83drXuhU6cEtlGapNUy/dMigtNbO/A8PKjVRBSS8FVs5VEUux6/fI6imX/hQOECbWKrhni4ZHn5HiF072vwftnR7YbdqkAPa+4d11WKYHWET0fgBvANgHYCeAA0TUTES7iWgjEX2KiM43++962YNPJ1AWkpkFM7TEdVRH5H3sbdX2BEbYOB3B6ZgZ8vX1BtPXY5UrWL1DBswAsGZeBG0JRnti4IDTi0GWsSmxghNtUmHQyfYdSOMaG24w3NuMC/x4ysPrsKwYMT0MI+3vVwDWw0j/OwNgKoA7AfwIwF+IqNWCv+1JZzt1DC2T2atuhZw4m+KMxdeqJrbG+bI6I1FgyXq39jWztGqMKtXeEZZbBqRuUxYiaGkecE8or1g7P4LmuI7OpARZfVHIqDDYoum4/ylJL3Wiw806xtfY/4LnmGofjrdKiqCZ3gtgCzN/nJmXM/NnmfkiAJUApgC4A8B/AThpwd/2nAd2a6gIk5R2NkFjp466qLyPva3ensBImb3qV6EDtVaNcZcD0lLdMiAtNbMvOIyqVLByuwyWu62br6KhU4KscyEijK32IZkB1u6QfuMkbZruqDHfmCoFR1u8WezCilFTDMCfet/IzJ3M/Cwzf52Z/56ZL7bgb3tOY4zzCgrcOqOQ78lSZ0ZbgnH3DJm96omZkcwywjasbucW3etnnHLCFPYT8hMyWUiVuC5EhPULJMgayIgKBURGBWLhDM8fyuDqCfZPD+x27QUBPPVXb67DsiLAehrAhRY8r+jla08nHHUlw2qFnCRPtOoYJRs0v8O6nQkMKbCioluD+W6FDs6MiyTO6XtuGYy6jazFervuIKsxpsuarH4MKVMQDgDLt8YtapEw07MHM5hs4w2Ge5s6yY89b3hzHZYVZ/V1AGYR0aUWPLfooSHPlDa3D3hzpaWNk+/NU+yfolVssRSjPCwBvJU6kow7HJAe2JNbBqOlZPZxWA0SElKC+22MICuCVk2X6oL9qIkoqAgR7nlSgiy7e/VMFhcNc84FuaqIgo6EN9eIWvEpfQbAVgA7iGiOBc8vAHx9bwKRoMxedStkU+HjrTpWzZXUwN46k4yQbLbcr0IHZPEU23Jz4cFwy2DUTcpDJNXh+rB2fgQdSaA5JkHWuVSqCmoiCpZsjkvZf5vSUsY52Wnjvvqxfrx4zHvrsKwIsJYA+CiAoQC2ENFBIvo2Ed1IRFcQkXOSR23sTIeOYeXO+pJZpaDUwDbGyAoFiiLvZW/3P6XlVZ2yJ5kt7d+ZDh3LZzlr9qontwxG3aI2Smjy8Mae/Vk9T0UiY2R+DOTbn4y6om/nevwtDxOGlClY+qQmQZYN/eZoBh8Y57wh9JwLA9j2qvfSBK0IsGYBWAzgpwBeBzAOwJcA/CuA3wLoIKLfEtG3LPjbnpDKMHwK8tr3ym0D3kI3FFYIuG2acwe4VsrqgN8ngee5FDoAS2YYfh8cH9y7YSDqFgoRmCGD43NYOVcFM3C6fXBBqBv6dq7n/LIQYagEWba074AzNhju7YrRPrx03HuFLkwPsJj5KWZ+gJk/zcwXAqgAcA2AWwH8AMBfAVwK4Mtm/22vWLNTw/By5+TgWqWQk186yzjbqWOlpAb2SUsxAhJcnZMZA68TbTpWzHZH/3PDQNQtykKEh/cmS90M21o2W0XQBxxrHVzKkhv6dq5BVjQkM1l29NKJDC4b5St1M3KmKIQqldA0iBRdN7F8lM7MMWZ+jpm/wcw3MPNlAMoAvM/qv+1W6SwQ9PjamEJOesyMQ8061s13x+DWCht2J2RPMAvFkoywn1w1Q+iGgagb1EQIzZIm2K/FM1VUhhUcasoOKoBwS8pgLsq6gqxlW6SEux1oKUZAce45Y9aFAez6q7fSBEsyDcLMKWb+XT6PJaJ/IqJDRJQgoheJ6JoB7v/PRPQqEWlE9Fci+nyv319PRNzH0JJtYwAAIABJREFUjy3zxh7YraEyz6pubkkPLPREd7hZx5gqRWZo+pGSva/OyYyB1qkOHSvm2PIQUxCvDULtyKcQPFiwK2d3Tg9jeLmCA436oPcPc3L/zuf8XxYyZh6Wb5HqgqX2/OEMPuSg/a96m/WuAHb+RQIs2yKivwPwCID1AC4H8DyAbUQ09hz3/wqADQBWA7gEwAoA/0JEC3vdNQ5gRM8fZrZlKabmOKMm4t2Bb6EnuBOtOmoihFukJLvIgxkDrLMdOoZEnVcJarCcPAgV3nLL1DBWzVXxRpOOdFaCrL5UqgqiIcKq7TKTVUq7X0tj+gXODbDqyhQ0xdlTm6E7KsACcDuAx5j5O8z8KjPfBOAUgK+c4/6fA/AdZv4vZj7IzD8BsAnAol73Y2Y+3fPHupeQP11nEMG1A7OBFHpiO9uhI+gH7pohqYH9SWeN4h/i7cwYWKWzjFiKXd8HnTwIdQOCFLoYLDVIuH+BiiPNOrTU4IMsL/XxmogChYD1uyTIKpU/nc7ikuHOW3/V0+WjfHj5hHfKtTsmwCKiIIArAezs9audAK4+x8NCAHrPRGkA3k9EPbfCVonoCBEdJ6Iniejyc7WjoaEB9fX1b/5s2rQpx1eSv/ueSqA24piPzFSFnsyaYzoyOnDPLHsPbDdt2vRm3ypVX3t4bwLlIYmwejJjMMXMONKsY8280vfBnv2so7UR6264+s2ffY9/15S/4bVBqJ0EfATNJtk4djimDcTvI2y4TsWZTh0tOaxfc2L/znepwLByBVqabb3PWs++lsm4p2pdm6ajIuz8rIe5FwU9Va6dnHKVi4hGAjgBYAoz7+tx+70APsvM7+rjMesBfAHAAgD7YQRoTwIYBmAkM58ioqsAXADg9wDKAdwCYB6AS5n59d7PWV9fz/v37zf75Q3Kks1xTKjN/wqGU9dgFXoSa9V0dCaNfVCcpL6+HqXoa8u3xjGiXDFlMa1T+1xPZg2iTrTpqAgR7phur/TU0RdcgRsffQ7DK6y7eOOGfmA2KwfnDZ06vvKhEGqi9rogV6pjWi5WbtOgEHL+Pjipj+fb95gZB5t0rJyjQg3ae7AfjUYRiznnM+nP5j+mcKZDxxevste5I1dZnfHx73fiV18oL3VTTEVELzJzfe/b7XX0Nd8aAFtgrNVKA3gcRql4ANABgJlfYOYfMPPLzPwsgL8DcADATSVo7zl1pwd6TaGDkDZNR3uCHRdclZLsf/UWswbBLXEdPoLtgivAGEgSAY0WltCV2aziIgDOuHRqPyvnqgj6gcPNg6sw2M1JfTzfYJCIMKFGwfJtUr69mHa/lsaMCwID39HmfAqhPERo9UiVUycFWI0AsjBmn3oaBqDPNVPMrDHzDQAiAMYDGAvgMIAOAA3neEwWxmzX+WY02iwbdydQrXpr0GtGcNWWYKydHzGpRcJLzBosaSlGW4Jx7xz7BvnLZ6tIpo3ZXis5ZQBqNavfhyxDqqQWYPG1KoaWKXijUUdmkMUvurm9jysKYUyVlG8vpkPNekHZS3Yy810B7HrNPemb/XFMgMXMKQAvApjZ61czYcxQ9ffYNDMf7wqePgXgSWbucyRBRpLre2EUz7CN9iSjIs/y7E5jxpXAlriO9qQEVyI/Zg2S0lnG8TZn7Lm2ap6K9gSjrQhBltsHoaWWyjAizr/gXVK3Tg1j/QIVh5p1xAZZ/KKbE/p4ISmNaoAQCRLuf0qCLKud7dAxtMwxQ/UBzbowgB0eKdfutE/tIQDXE9EXiegiInoEwEgA/wYARPRDIvph952J6AIi+hwRnU9E7yeinwB4N4ClPe6zgohmE9F5RHQZgO/BCLD+rZgvbDCcvsBxMMw4KTXFdMTTwJp5ElyJ3Jk1MMrqxobW9y1QHfPdXTs/grYEoz1hffqPEwahVijGa86ypPmaIeAjbLxORVNMR0Nn7hce3NzHh5QpaIkzUhlJFbTSntfTmHa+c8uz9zasXEFDp+6JFFNHBVjM/FMAtwJYBuBlAB8GMI+Zj3TdZWzXTzcfjNLuvwewC0AYwNXMfLjHfapglG5/FUZFwlEAJjPzb6x7JblJpBl+D9TNNmuPoXQWWDXX/jMGXuCkwYWZgyGdGQeadKydpzpuoLt2fgStmm75TFY3Nw9Ce/PK63QTIsLa+REQAUdyXJfVza19fFy1guVbZRbLSk+/nsH08901Hf2eET784ZT7y7U7KsACAGb+FjOPZ+YQM1/Zs6IgM09l5qk9/v9VZr6cmSPMXMnMH2Hmv/Z6vtuYeVzX8w1l5tnM/EIRX9KANu5OoNbFmwubdfI52aaDCLZe6yLsyczBj86MA406xlcrCAec+b1dOz+CjiTQXMTFyG4dhHYr1mvTPXBluBSWzjTWZb3eqOc9a+O2Pu73ESrDhA2SKmiZ0x26pRVeS2HuRQFs+7P70wTd9am5VCLDti+Jmi+z9hc62pKFGrD/PldeZPcBhanBlW4EV2OrFXx1sv0qBuZi9TwVibQxK1xMbhuEAsX9DrTEGTUe3S/RardMDWPDQhUn2vSCLj64qY/XlSloijN0XQJ7sx1qymJ8jfu+yx8Y58evj7q/0IV7EjvFgL79yaht9uowMxXrUJOOYeUKbp/m7AGtKC6zBzhZ3UgLXDPX/nvEDNbKuSrW7dRwvFXH6Krinuh7fj52OW7lqhSD6PYEY/0CORZaxacQ7lsYwdodGo40ZzGmWoGS5xrL7v7h1P7dbVSFglXbE1gl26GYavuracy50F3pgYAx8xkJENoT7i7e5r7Q2GXcdlXIzCt36SzjjUZj4CfBlb3Z7Wqt2e1JZYzgav189wRX3e6ZpaIiTDjQmC1Z+ln3ccNu/ag/pWhrOsvwKd4oiFRqy2arGFpulHLX0oV9L5zYv3tSg4RUlnMuaS/6t/eNDKZMcl+ABQAzLghg92vuThOUAMvmvv5MEmUmDthKeQA382/HU4wjzTruX6DiJoenYnmFHQYPVgxitDTjSIuODQtVBP3uHNjeOT2M0VXGYDJZ4qphPQejduhTvZWyXafadSyTNOmiuWVKGBsXqmjo1HG63ZxUWrv264GMqlSwarusxTJLKsPIMiPisgt23eZdHMAWl6/DkhRBm+tIsuM3GDb7ZNEc19GRYGy4zjnlr4WhVCkxVg1Y2hOMppiOjR7oizdNDiOrM5Zt0VCpkm3W+fT+bEuRbmWHAXFWZ+gMxxZWcSpFMaoMPrBbwxsNWYytVky50GJ1iqzZfTboJ2R0I+tG8UDVY6s9dyiDD09w5+wVYJRrb+w0NvJ2WqXdwZIAy+aSGUbI5KvixRjkWjXgONmmQyFg3QLZ48rJirEe0OpBb2PMSA26b6F3+qKZ60+s0t/nbkafs0Mw1ZdjrTrunS2zV6Vy1wwVWZ2xfKuGsJ9MrfxmdrBlVR8eWqZg3a4Elks/LNi2V9O44QOhUjfDUtdM9ON/D2Yw1WVl6LtJgOUAVl0Zt2KQa9WBW2cjJbA6Qrh7hhy8rcbMls/IWHGFtliD35NtOnyKdzezXjZbxaPPJHCgUcfISgVRh6Sx2DU4KpSWMvZKlNmr0vIphPULIvja0wm80ZDF6Crzt2oodMbWyu9ANEQ4m8eGzOKd/nImi3cNtUeWgFU+8p4gHt2XkABLuJMZs1lWD1oSacbRVh3jqhVZb1UE0SAhlgLKinjxrK8+NFCfLMVguTvQr4kQ7vJ4oH/zlDCYGSu2JdAc1zG6UnF9mqQdMTNOtOm4f6G3+6Od3Dk9DF1n3LtNA5GxPsmqmV67XTQI+QkdCUa5i6vDWe1Eq45RHjieTqzz4WCTXpQLuqUgAZYAMPirYsU+mDfFdLQnGBsXqpLXXSR3Tg9j7U4NZSFfSdtht4FDOss41KxjbJWCm6dIoA8Ys+ur56l4ZK8xmzW0XHF12V07OtXOGF6hyPHRZrrXZj3yTAIHm3TURgjVNlm3aKWhZYSNuzWsme/N2X0z7PhLGnMucuesTm9XjPbhpeNZXDHGfeGI+16RMEWpB7c6M4626IgGyVNrXOwg5CdksqVuhb20JxgNnUbVSrcuyC3ELVON2ay1OxNojOkYU6UgIO+T5ToSDAZkmwobu6XrYsz6XRoONGYxskJx3VYOPfl9BKnWXpjdr6fxb5+w1wVGq3z0PUH89yspVwZY7r+c4nDuPQyfWzzFONCoY3i5gnuk5HBJKGRUJRPGeqvOJGPDdREJrvpBRFg+W8WaeSpOtOk41pp13T5+dpLOMs526lg5R4IrJ1g6U8V9C1Q0xxmHmrJIuzwK4RLtmed0mSxDS3snxfLSUT68fMKdV3QlwLI5Lx2imBkn23Q0xY2y15KGVTpDyxSc7fRS73unTJbxRmMWZSHCyrkS6A9WwGcs9B8SVXC4RcfJNr1kGxS7la4b6arr5rt/ewA3URT6/+3dd5ycZbn/8c93tm8anRA60nsgNEEB6QgcEBXsCAIH9dD80XtvKkVFBFHhAFIUpXhCbyJFQ5UmNYEAAUJ6snXm+v1xPUOGZTfZ3Ux5ZvZ6v17z2uSZZ2auuecpd785Y/cWzty9hfdn5Zg0LVuTi/O2NoiZbbX3vcrhsYndbLVK7bXm9EUSqy+V4bWPaq+QFQWskAptncbrU3OMbBZn7d4amYYKO2K7Ztq6hu4NcmZbjknTc5y9ewv/70tR0B+Mw7dt5vw9W1msRUycFgWtYsmZ8cbHOc7aLbqrVquGOh+fdcouLUyemePt6dma6jHQ2iguf7Sj0mFUpb8838neGzRWOoyy2mfDRv76785Kh1F0Q6eYHFIpZ8a7M3IghsRirdVk8Rbx8dwcSw4bOvUwOTMmz8jRWCcu2CvG/hXDkdt5AfXSh9qZNC1HfQaWG5mJwsEgZHPGmx/7GLdaHsczVDQ3eGtvW6dx1j1tCBgzqvrHL9ZnoDtmax8wM69oXmPpyk4wVW5br1rPzx5s55gvVTqS4ooCVso114t5nUZrDd5Mp8/L8fE8Y4VRMStbGh23YwvH3j6PJVprcwrVnuZ0GO/P8sxrHI/Fd0RS0GrrNM6+p42cwdLDMwxvqv1jqxg6u42J03Kc/eWWWO+qxrQ0ekGrs9s48+42sjkYPTJDS5X+zjmDIXDLKLpn380ydvmhVbgCXz9uzMgMk6ZlWXmJ2vn+Q6dqukqdtHNzzS3c19ZpvDE1S9bgwr1aIzObYmNGZnh3Zu10XelNLme8PT3rywHE2L+Sa2kU5+zRyjlfbmFup/Hmx1nem5mrqS5SxTar3XhnRo4L9orCVS1rrPeug2d/2SfDeGNqlplt1Xf/n9dltMZxOmC3Pt/JPhsOre6Bed8a18j1T9VWN8FowUq5uoyoky+2W+031s5uXxCzsV6ct0esa1UNjtyumdPGt9XswpHT5uWYNs9YcbFYxLrcMhmfdRC89fD8+7zmfkSTWGKYSrYwazXJd1ltiC6rQ0pdRpyxWwtmxnn3tvPG1CzDGsUyI6rjvJjTYRy/e1xPB+q5d7OcuVvttOAMxOdXqee8+9pratHhKGBVgTN2a+HYO9pYfanSrQZfSl1ZL1jVCc7aPQZmV5vTd23m+DvaaKzP0FRfG79dR7dnXEe1iAsj41pxw5u85h7gpw/4WC2AEc1iidbqyFQW27S5Oaa1RRfqoUwSJyZLlVycjGGUYPSITGorXM0MM6ICdYBe+yjL6ktlaqZwMVCZjBi7fG0tOlwb36LGZTJipcUyvDk1x2pVVMjq7Dbem5UjIzh91xYaayRzPtRI3uJ43B1trLhYem/s/ZHNeWEf4Nw9WqiLTEDq5GdtNDN+9mAHb0/PYeYLYC81TDV/HZmetKouHoX/UOCoZAxjV9YX9O7o9ll3l2xVqjLlH84xlhpCEyMVy1+GcPfAvG9t2sRVj7dHASuU1+HbNnPZw+28PjXHqkuke5ahti5jyiyfLeyM3VpSHWvon0xGXLBnC8ff2cZyIzIMq7KJCXJmvD/L6Ow2TtmlpSYnjak1kj41Rf7cDuPC+9vpzHot/qhmMaqlNlq3urPGB7ONjqyxWHN0Bwx9a6jz7oMAF93fxsRpXom5bApatTq7jXmd9knX39B//3irm59sP7RbqtcZXcdrU3N0Z60mejpFAauKHL5tM11Z4+S/tbHUMDGqJV21RDPbfFbA5npx9pejdaDW5AtZp45vY3aHGD0yXcdfb3I54/3ZRke3sdzIDEdsGzf+ajWsyRdpBf9df/pgO29Pnz8BwKhmMapZVdM1qStrfDTHj826DJy4UxT8w8Acs4OfD90FrVpN9WLZESr7/Teb81kuL9grrrEDNXlGjuVGZiLPBOywRgMPvNbNzms3VDqURRYFrCqTH+x81t1tTPs4y0qLV/akzJlnEuZ2GiObvCtZmrorhOKSfCHoi+5v4/WpWVYYVfla0950ZX3K9fx0x1Gwqi2ZjDh2h/m/ab7ANXlmjvxkhI113sLV2kAqrkkd3caMNvtkAe/6jDhuh+aqaw0O6VNfJ05PWrUue7idyTP8PBje5F0IS13p0J319dmiYnVw/vh0B/uPHdrdA/O+sWkjJ9wxLwpYoXJO2aWFtk7j9LvaWKxFZV8MtrPbmDI7R3cOlhmeiS4BQ8wxO7SQzRmnjW8DYPlR6ah9m9NhfDQnR10GTtqpJRZjHSJ6FrjAuxRe/FA7H82ZP/17XQaGN4phjaUZy2VmdHR7N+m5ndBdMPV8Y504ctsmRrWka8xMqC2FE6L8/MF23p7hYxhbGsTSw4vfsjWjLcfUucZ5e8ZwgMF6+PVufrLd0O4emLfsiAyzO4y5HVb1lU9RwKpiLY3emnX+vW28MTXL8iVuTTAzps415nQYDXXi1F1i4oqhrC7jM7/N6zTOuruN+gwsNzJT9r7Tnd3GB0lhf1ijOOfLsQRA8C6FJ/eo+OnKGpc81M5Hc42ubO/rC9XJWwQyAuELpuYMzPxvd85Y0JJdTfXeanbSzs01M+tmqE5HF4zpueShdt4taOFdlC61Zsb0ecb0NmNkc0zGsiief6+b9UbXxT2rwN4bNHLbC518c9OmSoeySKKAVQOO36mFXM447S5fR2b5UcWbBMPMmN3h6wWZwZLDMpy0c7RWhflaG8V5e7bS1mmcfU8bOYNRLWLxEtXUmxlzkmMyZ74458m7tERmNixUQ50+GbfSl66s0dkNWfOuhwZkBBmJ+gw01FETA7DD0HJkQQtJLmdc9EA778zIka8ryMhbuZrrRVM91Ge8csEMunK+FuecDujM+iuWaI3JWIrh+gmdfHtcdA8stPcGjXz/j3OjgFVukn4IHAMsB7wIHGlmf1/A/j8CfgysArwNnGNm1/bYZ1/gLOBzwBvASWb2l5J8gRLJZHxsTEe3ceZdnslddkRmUIOmc2bMbDNmtvt6FiOaxNm7R6tAWLCWRnHOHq2Y+c17UjIBQV0GFmvOMKyJAc/4lu9yNbvDx/nlDW/0mbQioxuKraFONHyy1mccX6H2ZDLiuB0/XdGQzRmz2o1f/6OD2R3eUmvmhaz6jGhpgBN2ak7lmNtqlcsZL0zJssGYqsuKl9SwJjGsET6YnWPZEemfTKsvVfWrStoPuBT4IfBo8ne8pHXN7O1e9j8MuAA4GHgS2By4StJ0M7sj2Wcr4CbgNOBW4CvALZK2NrMny/C1iqqp3jO52Zxxzj3tfDDbx6Ms1pJheGPvi/91ZY3Z7cbsDvukNmtUs3e1irECYaCkT4+H6eg2fvZgO9Omzz++BqK5Xvz4C00snrL1XkIIoVbUZcTireLEnaKHSrnc92o3X1qjqrLhZbP/2EZueKrzk/XfqlG1/bJHA38ws6uS//+PpF2Bw4ATetn/O8BVZvbH5P9vStoMOA64I9l2JPCgmZ2T/P8cSdsn279Rii9RDnUZcequ86dwveiBdibP7H3sQENGjGgWZ+3eHK1Uoeia6uOmHUIIIRT6wz87uOwr0c2yNzuu1cAlD8/hiC82VW2+tGoKWJIagU2Bn/Z46h7g8328rAlo77GtDdhcUoOZdQFbAb/osc/deLfCmlBfJ06IDG4IIYQQQsW9NzNHYx0sNbx6u8CVUl1G7LBmPfe9Wr1rYlXTL7sUUAd80GP7B8DoPl5zN3CgpM3kxgE/ABqS9yN5bb/f86OPPmLcuHGfPK688spBfJUQenfllVd+cmzFsRZKJY6zUC5xrIVyKTzWuru7Kx3OAv3uyQ4O2rK6J3EotQO3aOLqJzoqHcagyWwwoyLKT9IY4F1gWzN7pGD7qcC3zGytXl7TAvwK7yoovOB0HXAsMNrMPpDUCfygcOILSd/FuxZ+5ugfN26cTZgwobhfLoRejBs3jjjWQqnFcRbKJY61UC7Dhg1j7ty5lQ6jV91ZY6/fzuFvhwyPccULcehNczluh2ZWW6pu4TtXiKSnzGxcz+3V1II1FcgCy/bYviwwpbcXmFmbmR0ItOKzCK4ETARmAx8lu00ZyHuGEEIIIYQwGLc828lXNmyIwlU//OgLTfzq0epsxaqaApaZdQJPATv1eGon4LGFvLbLzCabWRbYH7jTzPKrTD4+mPcMIYQQQgihv8yM/53QybfHRffA/thwTD1vTcsyY17vC8OnWdUUsBI/Bw6Q9ANJ60i6FBgDXAEg6VpJhV391pT0HUlrSNpc0o3A+sCJBe95KfAlScdLWlvSCcD2wCVl+1YhhBBCCKGm3fNKF9t+rj7WExuAH23TXJWtWFVVwDKzm/Dp008GngW2AXY3s0nJLislj7w6fGr354B7gWbg82Y2seA9H8NbtQ4Ange+C+xXjWtghRBCCCGEdLrisQ7+e+tovRqIL61Rz+MTu5nXWR1zRuRVzTTteWZ2OXB5H89t1+P/LwNj+/GefwL+VIz4QgghhBBCKPSvt7tZc+k6RrVUVdtGxUniB1s28dvHOzh82+pZeDh+5RBCCCGEEEro/PvaOHr76ikgpMle6zcw/uUu5nRUTytWFLBCCCGEEEIokXv/08VGY+pZdkRkuwcjkxHH7tDM+fe1VTqUfotfOoQQQgghhBLI5YyLH2qP1qtFtP0aDbwxNcekadlKh9IvUcAKIYQQQgihBH73ZAf7bNjA8KaYOXBRnbV7C6f8X3W0YkUBK4QQQgghhCKbMivHHS92cdAWMXNgMay+dB2jR2Z49M2uSoeyUFHACiGEEEIIociOuX0eF+zZSiYTrVfFctJOzZx9Tzsd3eme8CIKWCGEEEIIIRTRzc90sNYyday9bF2lQ6kpo1oyHLltE6emvKtgFLBCCCGEEEIoklc/zHLjM52csGNMbFEKu67TyLwu4+HX09tVMApYIYQQQgghFMGcDuOIW+fx668Noy66BpbMBXu2ct597UyZlat0KL2KAlYIIYQQQgiLqLPbOOCGOZyxW0useVVirY3il/u2cvBNc1M5Hit+/RBCCCGEEBZBLmccctNcDtmqmc1Xrq90OEPC6kvXcfgXmzns5rnkcukqZEUBK4QQQgghhEHqyhqH3DyPXddpYOe1GyodzpCy01qe5v9z6zzM0lPIigJWCCGEEEIIgzCnw/jmtXPYd8MG9t8k1ruqhP03aWKLleo5+KZ5dKaku2AUsEIIIYQQQhigCW93s+/vZnPMl1rYbd3GSoczpH138ya+ulED+10zhw9nV37ii+gkGkIIIYQQQj+1dxkX3t/Omx9nufmA4YxqifaKNNh1nUZWWaKO710/l6O2a65od804IkIIIYQQQliI7qxx49Md7H31HDZdsY4/fCsKV2mz9rJ1/OWg4Tz0ehffvW4Ok2dUpjUrWrBCCCGEEELow4ezc1w3oYN7/9PN3hs0cPsPhtNYH2tcpVVzgzh3j1Ze/TDLcXfMY1SzOGq7ZtZYuq5sMUSxOwWuvPLKSoeQOpEm5RHpvHCRRuWRhnSOGNITQzVIazqlNS5Id2yFcjnjxfe7ueiBNva5ejbH3TGPDcbUc+chwzl06+ZPFa7S9p0invnWXKaO678znCO3bebSh9vZ+7ez+cb59/P29GzJP1tpmtKwGowbN84mTJhQ7Pek2O9Z7SJNypMGkc4LV+tplJbvl4Y4IobSxpCG71ZMaf0+aY0LyhfbsGHDmDt37gL3yeWMWe3GB7ONt6ZlefPjHK9/lGXi9BwC1lqmjt3WaWCrVeqpr+u7tSpt6R3x9K0ra6y76w/Z7b9/ytvTc4xqEeuNrmO90XWsvWwdY0ZmaGkcWMukpKfMbFzP7dFFMIQQQggh1IzObuO7182hvZs+10aSxKhmsfRwseqSmU8KVCsvniGTie5/taihToya/i8u23cYALPajZemZHlxSpZH3ujgvVk52rr8eCk8AloaRFO9qMtAfYbkr6hfQD/AaMEaIEkfAZOK/LZLAVOL/J7VLtIENgGeLvFnRDovXK2nUTmOs/5IQzpHDKWNIS3HWrGk4bfqTVrjgvLFVs5jLW3pHfEsWLHjWdnMlu65MQpYIYQQQgghhFAkMclFCCGEEEIIIRRJFLBCCCGEEEIIoUiigBVCCCGEEEIIRRIFrBBCCCGEEEIokihgpZSk+G1CxUkaIWlEpeMIoZIkVXTO5kp/fl5a4gghDEzkKcsvEjxlJG0gaayZ5SodS5pIykiq67EtbvYlJGl94I/AlyS1VDqetJG0oqTvSDpQ0iaVjicUn6QlJS1uZlap642kzwFfl7RkJT4/iWF4UtGyRKViqAZpvU8l+Yq9Kh1Hb9KaZoOVtu8Tecr+K/bvFAWsFJG0IfAcsGelY0kTSesAlwN3Szorf6OoZKan1klaD3gUX/PtSTNrq3BIqZKcq38HDgdOBK5NCqRhEUlaVdIRkn4l6SuSRlUojtWACcDpkpapxPUmOc7+CWwFtCbbyh3DesAtwBPAjZL2L+fnV4u03qcK8hWpqwRKa5oNVtq+TxrzlEmvmDHJ34ZkW8XKIpLGSboW/Hcq5ntHASslJG2M38AuMrMzKx1PWkhaG3gMGIFn9rcFLpV0JlSBvJuHAAAdyElEQVTvhTjNJLUCFwDXmtmPgA8kbSJpC0lrVDi8ipO0EvB/wPXAdsABgAFLFuwTx+QgSNoAeATPEGyCZ+x/mDxX7vvVtsDKwNrAUZKWTq43ZYlD0orAbcDVZnakmb2TPJUp2Kekx5mkdfGKlpfxjOMMYF9JTXGMz5fW+5SkjfB8xYVmdnof+1SqZTaVaTZYafs+acxTJtf3B4EH8EWgL5e0lpnlerb6lSmejYCHgdmleP/6UrxpGJikC8hTwClmdm5Sqt8XWAt4E3jJzJ6qZIyVkFyMDgHuBb6dXKBWAr4OnCWp2cyOLXatQ6ATWAz4Y3Is3g6MBpYD6iX9xMyukaQhmvY7AP8BTjOzbuBRSZOBLZMazBfN7O9DOH0GRdLKwK14wfVkM+uWdDDwM0nXFRQwyuUlPCPwHPBlD1HnmFlJbsa92AR43cyOTc7DU4ENgZmS/mFmv8ln2kpxnCUVLecA15jZ0cm2qcA3gOHJbh8n24fssZ7W+1TSAvsMcLaZnSqpHvg+sAHwLvC8mY0v5TG0gNhSmWaDlbbvk8Y8ZZIe9wM3An8FtsErKO+XtKeZPSOpzsyyZYpnI7xAfLmZHdPHPplF6VoZBawKS0rtuwECPkg2jweWAhqBUcAkSb80sxsqE2VlJBep1YFs/sJkZm9LugroAM6Q9L6ZXVzRQGtIUju/DLA6XlN+evLUt/Gaud2A30uabma3VyTIymsCNsZvVi9KOgHYBWjBr6mfl/Q1M/tzBWOsKsl18BvA88CFQDY5Fu8GjsePvXLGkwG68N/0RLzSYTdgjqStgQfN7MISh7Ex81ur7kni+Q8+Dup8SSub2YklzLR1ASviGbW8DZO4ngbek3SXmZ1RLRnhUkjjfSrJ8G+Q/Lcj+XsvMAw/lr8AHCzpV2Z2cbl/vzSm2aJI0/dJcZ5yM+A14Hgzmwc8IOlveMXRg5K+aGbPl6OwL2k54B/AzWZ2jKQm4CxgDTydbgNuNLPJixJPdBGssKS0/mf8Jn6ZpA+AmcBXzWxdvOb0XeAgSctWLtLyKuiG8wgwJml+B8DMZgI3AX8A9pE0uvwR1iYzy5nZe/jN+DBgHPBrM3vRzJ4AzgV+C/xIPvC9arpwLKqC7/pv4FngYUm34LX8/wXsCOwM/Aoft7N0RQKtQsl18BW8xWaauRwwBS/QLl/OYy05D54G2oDRZnYyXut6BN715zkoefeqJ4DFJB0OdAMHmtn/4OflKcA3JX2xFB+cXH9b8K5OW0o6VNJ5wJHAacBRwF/wTPo+pYihyqTqPpVkCO/DK8ZOlTQTb238upltA+yNH88HycfYlU3BOZOqNBustH2fFOcpF8MrZ1oLYn0KOAFPu6sljSlTYX8MXkm0pXzYw634ONeJwPt4Zd/FkpZdlHiigJUCZvY+fgKey/wm/deT554FrgK2B1aqVIzlVtAs+yzeovKdwgyrmX2InxRbAquWP8LaIZ8pbTVJYws2PwZsgR93bcl+GTPrwC9ATWY2ZyjUXEtqkFRfUDP5D+BkPKP7T+AGM7vDzLqTmrlJeC3xnIoFXYXM7K/4zbYw0yK8BjiXT39J+/Q4Vosu+c0zeKZg02Tz54Bm/Pf9vJKJL0oYxkf42L79gA4zmwxgZrOAO4E6vIWp6JIC5izg98A8vPLgv4Afmdk1ZpbvyjkXb+0eUiQt36NwO4EU3KckrSfphuSz5+JjGA/EC+s/N7OJyXOT8Iz/2pToGOpLwTnzHClIs0WVxu+T5CmvIQV5yoLK8qeBN/AZUZsLYn0J+DVekVbS63rBZz6FVxJNxnsFCNjbzI4ys68Dv0liWaSJYaKLYAVIWh7YCFgW+JeZvWBmUyT9Dm85eDHZL9//cxY+yPjjSsVcDpJWxW/io4CXzexmM7tP0s+Bi4FOSVfnMxrA63i6hEGSz3z3e3xMxWhJvzGz483s15LGACcBJ0p6K3+BTvZ9N+lX3l6h0Msiqd09DlhN0r+B58zsCjN7PHn+MGAlScOSDA147dj7RAXWAiXn+w748fSKmd1lPti53nz8VR1+j2rHJ1dA0rnAj/GuaqWI4yUzu8fMupLnHsCvO78GdgI+j49lOADolnSuFWHMQI8YXjazu83s6aSL0a+B6ZI2N7N/Ji95B8+sFO386+P3uFPSI3gL2mM9Pu9D/DifV6wYqoF8Zrbb8K7Sk8xskpk9VOn7VBLX/cCSkq5JjqEuSbfi3TzfSvbLd3maDbzA/G5kpYxtFWBrvMLiP2Z2n5ndK+kS4OdU2b09bd+nj3jel/QHKpSnTApRHXi3xHbzMVYv4TPvvibpQfMxzJjZeEkX44W+v5U4nhYzm2dmT0k6Be+WfpeZfaxkDJiZXSnpbLxQPH6wnxkFrDKTz6JyG95EuxkwQdIVZnZdckJMKagpz7fi7I2fEDMqEnQZJOlyN17LsSaeoTAzu8XMfiGpEe+aspKkv+InxY/xmdsmVijsqiZpLeAhPAP3EN5n/4jkeJxoZqdIMnyg7t+SzObiwK7ANkOgcLUOPhX7dfhFdnl8woXVgWOT8/NDvNbyeEmv4F0gvg98saDAFXpICvYP4y3U6wIzJB0L7JlPNzPLJsdfCz65yukkXfTyNfEliuP9gjhm4Tf8KcBeZvZv4N+SuvGWy2IUrnqL4QNgdzP7TdKY9wu82+nVyX4H4+MF/rWon7+AGI4HvmxmsyQNw1vUVpe0AjAVr3xZHZ9Rc0iQTxxxL956d3bBPZrkPtVEBe5Tmj9b4FXAF/FKgLuTuNrw7rf5OPMtLt9L/k6mhJJ7+/3A4/ixNVvSdPx8ulQ++UbV3NvT9n36iGca8F9m9m6Sp8xC+fKUScXkmXjr6GRJ/2dmvzWz/SU9DlwBHC1pvJl1Ji97A88XlyOeO83sd2b2hKT3SCoZkntOHT7O9VX8txs8M4tHmR54F5O38TEbi+EZtvHALX3svzZwEX4SbFjp+EuYLmviF/lz8Fr/ZZID+7Ae+30fv7nNw2tkJgJjKx1/NT7w7kUXA/9bsG0dvN/+usDnC7bvlvw24/HxRetVOv4ypE8DcDXwy4JtS+EDY3PAlQXbL8C7YbyB3+hq9lwtUtq24lN//zr5/+LAHsk5/QI+5im/bxPe9eYxvPZx0zLF8SLzZ868FNgk2SdTxrR4OZ8WwHfwDHNbcm18tVjXvv7+HsBP8LEcryT7vzPUrr94F9Y/5Y8FvMB/bnINGJls/1Y571N4V6Z5wHnJ/w8CpgFb9bH/hskxPR3YqMTptSReaD8/+f/I5FjOJcfQMsn2qri3p+37LCSehwviUfK35HlKvOJnGp5XOBe4Ep8wp/CeeT8+S+u1wKH4EhAzgbXKGM/l+XO2l9ecjl9jV16kz670ATtUHnhG4SK85msYUJds3xmvBR/dY/81gBvwjNvGlY6/xOlyCZ6ZbSy4EFyXnACXAicV7L8ssH5yU1mm0vFX6wPvc/w34KaCbSfg44ZexWur/9LjNZn871PrjyR9HsXXjwGoT/6eg4+XnItP057ffyU8Qz6q0rGn/YFn4J8H9i3YlsEL+E8DzxRsH52k9RxggzLG8QwwIQVp8XzB9iWTDNK6wNJljOG5gu17Acfia5OtWuljqdwPvLU/f014Am/5fxCfHe0dkkxrue5TeCXtO8AFBds2wit7jkn+X1fw3CrJPfUflLhwlXzehnghfY0eMb+Itwo/XbB96bTf29P2ffoRzz8Ltq9FGfKU+Pjk+5mfl6vHh37MBa4r2O8UPA/yAl55VJLjcSHx/B4fT57fdze8t8CMYqRRjBEoH+Gl5gfMbK7N71oyFa8tbyzc2cxeA36KdxN5tqyRllcWH4j7CzPrNDOTdBI+i0s9frH4nqTbAMzsA/Mxa8+YDx4Ng2B+NbkH+IKkqyRdgV/wvgXsA+wObC/pjILXfDLRwBAwDF8vZIyk1czHBK2K17bdB1wG7ChpcfApec1sivmsUWHBZuEtqDvkNyTH1svAD4Dhkn6ZbJ8C/A+wtXn3vHLFcRCwuKRfFPkzBxLDD4AWSZcn2z82s1fM7CUz+6iMMbQmY9Aws9vN7EIzu9zM3ipiDNVCwIaSvo7Xiu+FZ8o2xiumbkzGOJXrPpUFfmhmx+U3mNlz+CQoP5G0REFeA/OutZfhA/qfK2FchUbx6TGTw/G80JH4OZaPfWqV3NvT9n0WFM/Skv4fgJn9Bzif0ucpV8AL9fm8Qs7MbsO7JX41GUeLmZ2Ft5RvjXdnLNXxuKB4voHPtpi3Pl5Zuk0x0igKWGViPl7lYjO7Gj41s8r7eAtWfq0KJO2UvOZp89lgapb5IMcn8wezfMrMH+In3CFm9lW8oLlRMiYmDJJ8hqnrCzbdgTeZd+IXoTPN7DbzKdn/hdfMrlGBUCuiMH3MbA6+wPLmwPXymblexLvzXoePOxmL1/6Hfkoyn1ngZmBTSXv22OUZfCHKDSWNADDvK1/Um28/47gBv+4MK+ZnDzCGG4H1UxDDepKGf+YNhgjpk1ktr8PXZDsCeNd8psUu8/F6h+PXg5JMnd9bTEmlzh0F2/L5imvx7mn79YgfM3ujyAX0BXkPb937rqTjJe2Bt/w9YGY34rMvrpHEVQ2Vd2n7Pv2Jp3Da+OfLkKd8CL+WbJ18Zi6ZXONe/Lw5RNJmyXNmZjOttOO5FxbPjwriuQj4jpm9UIwPjgJWGeUvasmFMT/YsAWvgWhMnjsLuEY+g9uQkBSy8v9+DW8qvrPgZvExPvZgWiXiqwXyGaYeAr4haVcAM3vTzH6JtxC04sfip15GiQadpk0f6fMnPNP0d7w7wZFmdljykia8G07NTjxTCgWZjv/Fxwn8WNKOPZ5/AZ+Jsfmz71CROFo/+w5DMoae14choyCdXsEztJsBKyfP5VuIcvi4prK0YveWgS/IVzyNt8B/va99Sy3J50zF7y9ZfLr4nwO/MrOjk90+xHuppF7avk/a4ikwAb9nHpXcV8GXmwCvtO3EryepjCepNCmKKGBVQI+LXQteI9YpnzLyGHwGq/cqElwFFdSyfQyfullshWdmh9R0wMWSzDD1JPBHfKzFVwqey0/b+jhey7OzpDGSzsHT/apKxFxOC0of86mqjzWzg83syoKX7YFPc9xNGJAkY/AmcAh+YztG0g+S55rwVsP3SNZfq+U4IobqUZChPQ3vgveFfNdJSUsAX8WvBxXtdZJc0w2fNW1jSftXIg4zsySWF/FlDTYDdjJftDt/vx/Nos7UViZp+z5pi6cgrtfxCptVgWMlbVqQ552Ez9jX2NfrayoeK9FAt6H8wMcONfTY1uvsU3gt2NPA7/A1Roo2S1baHgNJl+S5xfEubFOB9SsdfzU+6OcMU/hkK/fhta/P4eMJanZylYGmT8H+mwK/xVuuSj5IvJofCzrfC/6uiy/C+SbeWvpIkv5FO/bSEEfEUD2PfqbTCsCFeMFzOl5L/j6lnS1woPfPZfC1ry4nmaQnRbGtgU8YNA1Yu9K/edq/T9riWcDnquDf38cninoS+Ca+huBFeKvaSkMhnvysGqFIJK2L13CNwReXu8fM/pg8V2c91k2RtCbe7WAWsL2ZPVPmkMtiEOmyC76Wx07APlbbE32UhHxB6yfw9XqOS7ZthGegrjCzi5Qs6po8tyawWvLy563GW1H7mT6fHJvytdg2B44GTjezqqh5rYT+nO/51lNJS+Gzm+2KZ+r/bvMXta76OCKG6jHAdGrFu/fvhqfTK2Y2qVJx9fG6b+Ozcr5YirgGE5ukZfBx1t/HJ9tIVZ4nbd8nbfEkn/FJvqGX5/K9YpC0M56POxDvWgvwrRKkUari+eSzo4BVPEkG9Z9494HX8cLBMHzqzgOTfZrMrHBCi9H4/Pwnmdkrn33X6jfIdFke2BF42Iq0qOhQkxxbm1nBIOhk+6X44Od1zWxa4QVoKOlv+vR4Tvi0rjW9yPKiGMz5XqtxRAzVI63pNMj7Z58ZzhTE1oh3XetOWyVe2r5P2uIpiOlb+JTrr/Wxz6eOP0kr4uPE2nveU2stnk8pRbPYUHzgEwKcTbIIYbKtFZ+l5AUK1htKnjuApFkSaKx0/ClNl6Iu6jmUHvDZ9aqY371lU7wL0GF97Vvrj0if0qXrIM73FWoxjoiheh5pTadBxPW9cv1+aU2zWvk+aYsn+YzV8TUyc/h6aqv0Fncv20qSl0tbPD0fMclFkZj/assDyxVsm4dPEnAZsJak8wDks5T9AjhbUj2+ZkFNWoR0qWP+TC9hgJJ077ktNTNMVVqkT2kM8nw/JznfayqOiKF6pDWdBhHXL8sR1yBjS/Wxlbbvk7Z45EtFHI8vUXIYvkbeMZJW6SVuJJ2t+Wv4Fb2HTNri6U0UsIog6TYEnjGrl7R+/rnkhLgRX0l6B0mjzOwufHDdWWbWXasZuEVMl2ytpkslKSUzTKVVpM/gLcL5frb1MYakWuOIGKpHWtMprXGlPbbBSNv3SVs8iRy+Lt5dZvYbvFveAfRSqJG0OPA5YHf5mLChEM9nlaOZbKg8kh/wI+AaYLEezy2HHxD7VjrOSJfae5DiGabS8Ij0KWtap+J8T0McEUP1PNKaTmmNK+2x1cL3SWE8w3r8/yv4GpGXAysn2+qAxZLHckMpnp6PekLRmNkbkr4OjAfaJJ1uZlOSp7uAZ0nWeBpKIl1KSwWzDEn6ZJYh85muep1hysw+lK+79oyVYTB0JUX6lFdazvc0xBExVI+0plNa40p7bIORtu+Twnjmgs9eCOTM7Nakte1awCRdgnfXWxXY38xmDKV4eooCVpGZ2YOSvgbcAiwn6U/4SfBtfJrNNyoZX6VEupSGfAadx/BZhu7HZxkaK2knMzvQfFrhXmeYMrPrKhR22UT6VEZazvc0xBExVI+0plNa40p7bIORtu+TtniSmLJyGTP7syTD13LdFVgJ2NzKONtm2uLJi2naS0TSJsDP8CberuTxDUvZmg/lFulSPElNzVn4QoJfTba1AgcnjxfNbL+C/b8H3G9mkysRb7lF+lReWs73NMQRMVSPtKZTWuOCdMc2GGn7PmmLpyAumZlJugefgXdbM3sh4okCVklJGgksAQwHppjZ1AqHlAqRLsUj6ffAmma2dcG2Vrx264fAeDM7QT7L0C34IroH9tYtrhZF+lReWs73NMQRMVSPtKZTWuOCdMc2GGn7PmmLBz7pnncRcCSwsZk9H/G46CJYQmY2C5hV6TjSJtJl0eVrafBZhtaVtH6+lsbM5km6EViLglmGJF0E/HEoFB4ifdIjLed7GuKIGKpHWtMprXFBumMbjLR9n7TFU+BFYJNKF64KpCKeaMEKoYpJ+hzwBL4WxBGFgzglLQe8C3zNzP5coRArKtInhBBCKJ2CCs1USEs8sQ5WGJRkQOFXJd0m6X1JnZI+lvSIpCOTblihxMzsDXxB3P2A8yWNLni66mZxKrZInzAYcX0LlSbpKEkm6ZuVjiWEBUlDYaZQWuKJLoJhwOSLtt0M7AhMBe4C3sHXGfgScDFwhKS9zey5igU6RKRxlqE0ifQJAxHXt5ASmyZ/n65oFCGEQYkugmFAJNXj011/EV/87sdmNqfgeQGHAr8ApgObmdmkSsQ61KR1lqG0iPQJCxPXt5AWkl4CVgRGmVmu0vGEEAYmClhhQCQdClwB3Avs0ldTrKTjgPOBP5nZ18oY4pCWxlmG0iTSJyxIXN9CGkgahk9m8LiZbVPpeEJtkLQTcA9+7boeOBHYARgGPA8cZWZPVi7C2hJjsMJAHZz8PW0h/VwvBWYA+0haovRhBfBZhsxsopm9EIWHz4r0CQsR17eQBhvj+bOnJa0r6TpJUyTNkfSYpC0qHWCoSmOTv2sC/8IrGq8BHga2Am6XNKJCsdWcKGCFfpPUBGwCtAELrOUws/Zknzpgs9JHF0IIgxfXt5AimyR/VwYmAKOAa4mMcFg0+ePqC8DWZraXmR1rZl/G14BcBi/chyKISS7CQCwBCJjRzz7h0wpeF0IIabbI1zdJZ+MZl+1LEF8YOvITXGwJbGNmn0x0IenPwFfwjPDfKxBbqF75FqzvFx5TiZeTv81ljKemRQtWGIiZyd9lksHgC7NC8nd6ieIJQ5Sk7STdIGmipHZJsyS9JumvyfTGcW0LA1WM69tYfIbKEBZFvqXhgMgIh2KQNBxYA5iErwvZ02rJ35hVt0giExL6zczmARPxbjELbEZOutusl/z35QXtG0J/SaqTdCXwILAn3k3rMuBK4DVgV+AnMetWGKgiXd82BmJWyjBokpqBdYA3zWx8L7tERjgMxsZ4C/29fYwv3QSvZHqrrFHVsChghYG6Ifl7+EL2+zbedebx/DTGklZIFk7cT9IDkuZJek7S2pLGJYt4zpP0T0krlfJLhKp1Ej4Rwe3ACma2X9KH/P+Z2e74ulYHVDLAUNUW5fq2DH78ZSXdn1zLnpW0eenCDTVoI3z4xj19PB8Z4TAY+VbRp3o+kYznWxN4Jl/4ShZbP1bSfyS1Sfow6Z4a+ikKWGGgLgQmA9+UtHtvO0haGTgHyAFHFzy1UfL3MOAMYAugCfhD8r4n4gN4l+rxuhDyaxDlM76HmtnMnvuY2TQzu6+8kYUasijXt3yr10+AM/HugpOBW/rZ5TAEGGBGOIR+yo+/mtDHc+LTx9wxeGXlD4G1gb3w5StCP0UBKwxIkqn9GjAPuFHSLoXPS1oD+BuwLL6mwhMFT2+M17ztZ2YPm9m/8RP2c8DXzOxRM3sOnylpudJ/m1BlRgJLJv/uqmQgoTYV4frWBXwlub79BzgWWAm/xoXQH/kJLj5TwKL3jHAI/bEJ0Imvd9VT/pgrHO+3KzDezO43s0lm9oSZXVHqIGtJFLBCv0laRdLp+In3KDACuEvS0cnz2+ADvNfDxyUsIel0Sdslb7ERcKeZfVDwtisBt5rZxz22RfeH8ClJ5ndy8t97JR0kaYUFvSaE/irC9W0sfi2bWPC2+Qkw6kr+BUKt2AToAF7o5bneMsIhLFAyZnRd4AUz6+xll94K9bcDR0q6T9KhkpYqdZy1JrothIFYBTitl+0bJn9XB1qTf6/TY9+H8Brey3q8dixwao9tG+GTFoTQ0374ejBjgd8CSHobGA/8xsxigoEwWKuw6Ne33/d47ZbAHOD1YgUZapekRmB94Dkz662VfkGtWyH0ZX08v99b90Dw42oO8Gp+g5ldIulOYG+8m+CFkrY0s5i0rJ8U3XhDOUgaBswCvmhm/0i2LQlMBTZOugYiaUXgbWAtM3u1r/cLQ1cyBfs2wC7AtvhYvnrAgP82syuT/eqA0/EJCZYD3geuB043s+7yRx5qlaRWYDZwspmdl2wTvk7Rv83ssErGF6qDpE3xTPCVZnZoL8+/jC8PMDLGYIVyScaQTgMONrObKh1PtYgWrFAu+VrgwjViNsa7QrzYY1vU+IY+JVOwP5I8kLQEcAnwHeAiSVclmY/jgB8B3wP+jR+D1+DH3FkVCD3Urg3xSS++K+lBvOLodLy7894VjCtUETN7Ch9j1dfz65QxnDBESToO+AD4J9CN30M78Zb60E8xBiuUy0bAa2Y2t2DbWLxPcHeP/Z6LdYxCf5nZNHz6dvCJMJZI/v154A4zu8PMJprZ7Xi/8i0qEGaobRvj6xKdBNyMDyRvAbYws6mVDCyEEAaoCa+gnAA8hufLdugxfj4sRHQRDCFUvWStoSfxbgxLmZlJOh7vO76zmb0iaV3gbuA8M7u8guGGEEIIoYZFF8EQQupJ+jYwBbi/59gDSasxf1KUSwqevwCfCe4lSVn8endOFK5CCCGEUEpRwAohVIODgO2AtyU9ArwDDMcX3dwRnwb7cuDcgtfsB3wX+CY+zm9j4FJJb5nZ1eULPYQQQghDSXQRDCGknqQtgD3wQtZK+EKvOXxdrEeBq8zs8R6veQf4qZldWrDtZOAAM1u9TKGHEEIIYYiJFqwQQuqZ2ZP4GKuBaAWyPbZlicl9QgghhFBCUcAKIdSqO4DjJb2FdxEcCxyNL1QcQgghhFAS0UUwhFCTJI3A17vaB1gGX2j4RuBMM2uvZGwhhBBCqF1RwAohhBBCCCGEIomxCCGEEEIIIYRQJFHACiGEEEIIIYQiiQJWCCGEEEIIIRRJFLBCCCGEEEIIoUiigBVCCCGEEEIIRRIFrBBCCCGEEEIokihghRBCCCGEEEKRRAErhBBCCCGEEIrk/wN6AYFJ0o/T7wAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "