-
Notifications
You must be signed in to change notification settings - Fork 0
/
CGAN.py
207 lines (179 loc) · 8.46 KB
/
CGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import jittor as jt
from jittor import init
import argparse
import os
import numpy as np
import math
from jittor import nn
if jt.has_cuda:
jt.flags.use_cuda = 1#使用cuda
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--n_classes', type=int, default=10, help='number of classes for dataset')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=1, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=1000, help='interval between image sampling')#图片采样过程中的间隔
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)#(1,32,32)的输入
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)
# nn.Linear(in_dim, out_dim)表示全连接层
# in_dim:输入向量维度
# out_dim:输出向量维度
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2))
return layers
self.model = nn.Sequential(*block((opt.latent_dim + opt.n_classes), 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh())
def execute(self, noise, labels):
gen_input = jt.contrib.concat((self.label_emb(labels), noise), dim=1)
img = self.model(gen_input)
# 将img从1024维向量变为32*32矩阵
img = img.view((img.shape[0], *img_shape))
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2),
nn.Linear(512, 512),
nn.Dropout(0.4),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
)
def execute(self, img, labels):
d_in = jt.contrib.concat((img.view((img.shape[0], (- 1))), self.label_embedding(labels)), dim=1)
validity = self.model(d_in)
return validity
# 损失函数:平方误差
# 调用方法:adversarial_loss(网络输出A, 分类标签B)
# 计算结果:(A-B)^2
adversarial_loss = nn.MSELoss()#使用均方差损失
generator = Generator()
discriminator = Discriminator()
# 导入MNIST数据集
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
dataloader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
#优化器设置
optimizer_G = nn.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
from PIL import Image
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
elif C==1:
img = img[:,:,0]
Image.fromarray(np.uint8(img)).save(path)
def sample_image(n_row, batches_done):
# 随机采样输入并保存生成的图片
z = jt.array(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))).float32().stop_grad()#(产生n_row**2个图片)
labels = jt.array(np.array([num for _ in range(n_row) for num in range(n_row)])).float32().stop_grad()
gen_imgs = generator(z, labels)
save_image(gen_imgs.numpy(), "%d.png" % batches_done, nrow=n_row)
# ----------
# 模型训练
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# 数据标签,valid=1表示真实的图片,fake=0表示生成的图片
valid = jt.ones([batch_size, 1]).float32().stop_grad()
fake = jt.zeros([batch_size, 1]).float32().stop_grad()
# 真实图片及其类别
real_imgs = jt.array(imgs)
labels = jt.array(labels)
# -----------------
# 训练生成器
# -----------------
# 采样随机噪声和数字类别作为生成器输入
z = jt.array(np.random.normal(0, 1, (batch_size, opt.latent_dim))).float32()
gen_labels = jt.array(np.random.randint(0, opt.n_classes, batch_size)).float32()
# 生成一组图片
gen_imgs = generator(z, gen_labels)
# 损失函数衡量生成器欺骗判别器的能力,即希望判别器将生成图片分类为valid
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, valid)
g_loss.sync()
optimizer_G.step(g_loss)
# ---------------------
# 训练判别器
# ---------------------
validity_real = discriminator(real_imgs, labels)
d_real_loss = adversarial_loss(validity_real, valid)
validity_fake = discriminator(gen_imgs.stop_grad(), gen_labels)
d_fake_loss = adversarial_loss(validity_fake, fake)
# 总的判别器损失
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.sync()
optimizer_D.step(d_loss)
if i % 50 == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.data, g_loss.data)
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)
if epoch % 10 == 0:
generator.save("generator_last.pkl")#保存训练的模型
discriminator.save("discriminator_last.pkl")
generator.eval()
discriminator.eval()
generator.load('generator_last.pkl')
discriminator.load('discriminator_last.pkl')
number = '13338809797'
n_row = len(number)
z = jt.array(np.random.normal(0, 1, (n_row, opt.latent_dim))).float32().stop_grad()#噪音
labels = jt.array(np.array([int(number[num]) for num in range(n_row)])).float32().stop_grad()
gen_imgs = generator(z,labels)#生成图片
img_array = gen_imgs.data.transpose((1,2,0,3))[0].reshape((gen_imgs.shape[2], -1))
min_=img_array.min()
max_=img_array.max()
img_array=(img_array-min_)/(max_-min_)*255
Image.fromarray(np.uint8(img_array)).save("result.png")