-
Notifications
You must be signed in to change notification settings - Fork 25
/
dreamer.py
317 lines (286 loc) · 11.7 KB
/
dreamer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import collections
import functools
import os
import pathlib
import sys
import warnings
os.environ['MUJOCO_GL'] = 'egl'
import numpy as np
import ruamel.yaml as yaml
sys.path.append(str(pathlib.Path(__file__).parent))
import exploration as expl
import models
import tools
import wrappers
import torch
from torch import nn
from torch import distributions as torchd
to_np = lambda x: x.detach().cpu().numpy()
class Dreamer(nn.Module):
def __init__(self, config, logger, dataset):
super(Dreamer, self).__init__()
self._config = config
self._logger = logger
self._should_log = tools.Every(config.log_every)
self._should_train = tools.Every(config.train_every)
self._should_pretrain = tools.Once()
self._should_reset = tools.Every(config.reset_every)
self._should_expl = tools.Until(int(
config.expl_until / config.action_repeat))
self._metrics = {}
self._step = count_steps(config.traindir)
# Schedules.
config.actor_entropy = (
lambda x=config.actor_entropy: tools.schedule(x, self._step))
config.actor_state_entropy = (
lambda x=config.actor_state_entropy: tools.schedule(x, self._step))
config.imag_gradient_mix = (
lambda x=config.imag_gradient_mix: tools.schedule(x, self._step))
self._dataset = dataset
self._wm = models.WorldModel(self._step, config)
self._task_behavior = models.ImagBehavior(
config, self._wm, config.behavior_stop_grad)
reward = lambda f, s, a: self._wm.heads['reward'](f).mean
self._expl_behavior = dict(
greedy=lambda: self._task_behavior,
random=lambda: expl.Random(config),
plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward),
)[config.expl_behavior]()
def __call__(self, obs, reset, state=None, reward=None, training=True):
step = self._step
if self._should_reset(step):
state = None
if state is not None and reset.any():
mask = 1 - reset
for key in state[0].keys():
for i in range(state[0][key].shape[0]):
state[0][key][i] *= mask[i]
for i in range(len(state[1])):
state[1][i] *= mask[i]
if training and self._should_train(step):
steps = (
self._config.pretrain if self._should_pretrain()
else self._config.train_steps)
for _ in range(steps):
self._train(next(self._dataset))
if self._should_log(step):
for name, values in self._metrics.items():
self._logger.scalar(name, float(np.mean(values)))
self._metrics[name] = []
openl = self._wm.video_pred(next(self._dataset))
self._logger.video('train_openl', to_np(openl))
self._logger.write(fps=True)
policy_output, state = self._policy(obs, state, training)
if training:
self._step += len(reset)
self._logger.step = self._config.action_repeat * self._step
return policy_output, state
def _policy(self, obs, state, training):
if state is None:
batch_size = len(obs['image'])
latent = self._wm.dynamics.initial(len(obs['image']))
action = torch.zeros((batch_size, self._config.num_actions)).to(self._config.device)
else:
latent, action = state
embed = self._wm.encoder(self._wm.preprocess(obs))
latent, _ = self._wm.dynamics.obs_step(
latent, action, embed, self._config.collect_dyn_sample)
if self._config.eval_state_mean:
latent['stoch'] = latent['mean']
feat = self._wm.dynamics.get_feat(latent)
if not training:
actor = self._task_behavior.actor(feat)
action = actor.mode()
elif self._should_expl(self._step):
actor = self._expl_behavior.actor(feat)
action = actor.sample()
else:
actor = self._task_behavior.actor(feat)
action = actor.sample()
logprob = actor.log_prob(action)
latent = {k: v.detach() for k, v in latent.items()}
action = action.detach()
if self._config.actor_dist == 'onehot_gumble':
action = torch.one_hot(torch.argmax(action, dim=-1), self._config.num_actions)
action = self._exploration(action, training)
policy_output = {'action': action, 'logprob': logprob}
state = (latent, action)
return policy_output, state
def _exploration(self, action, training):
amount = self._config.expl_amount if training else self._config.eval_noise
if amount == 0:
return action
if 'onehot' in self._config.actor_dist:
probs = amount / self._config.num_actions + (1 - amount) * action
return tools.OneHotDist(probs=probs).sample()
else:
return torch.clip(torchd.normal.Normal(action, amount).sample(), -1, 1)
raise NotImplementedError(self._config.action_noise)
def _train(self, data):
metrics = {}
post, context, mets = self._wm._train(data)
metrics.update(mets)
start = post
if self._config.pred_discount: # Last step could be terminal.
start = {k: v[:, :-1] for k, v in post.items()}
context = {k: v[:, :-1] for k, v in context.items()}
reward = lambda f, s, a: self._wm.heads['reward'](
self._wm.dynamics.get_feat(s)).mode()
metrics.update(self._task_behavior._train(start, reward)[-1])
if self._config.expl_behavior != 'greedy':
if self._config.pred_discount:
data = {k: v[:, :-1] for k, v in data.items()}
mets = self._expl_behavior.train(start, context, data)[-1]
metrics.update({'expl_' + key: value for key, value in mets.items()})
for name, value in metrics.items():
if not name in self._metrics.keys():
self._metrics[name] = [value]
else:
self._metrics[name].append(value)
def count_steps(folder):
return sum(int(str(n).split('-')[-1][:-4]) - 1 for n in folder.glob('*.npz'))
def make_dataset(episodes, config):
generator = tools.sample_episodes(
episodes, config.batch_length, config.oversample_ends)
dataset = tools.from_generator(generator, config.batch_size)
return dataset
def make_env(config, logger, mode, train_eps, eval_eps):
suite, task = config.task.split('_', 1)
if suite == 'dmc':
env = wrappers.DeepMindControl(task, config.action_repeat, config.size)
env = wrappers.NormalizeActions(env)
elif suite == 'atari':
env = wrappers.Atari(
task, config.action_repeat, config.size,
grayscale=config.grayscale,
life_done=False and ('train' in mode),
sticky_actions=True,
all_actions=True)
env = wrappers.OneHotAction(env)
elif suite == 'dmlab':
env = wrappers.DeepMindLabyrinth(
task,
mode if 'train' in mode else 'test',
config.action_repeat)
env = wrappers.OneHotAction(env)
else:
raise NotImplementedError(suite)
env = wrappers.TimeLimit(env, config.time_limit)
env = wrappers.SelectAction(env, key='action')
if (mode == 'train') or (mode == 'eval'):
callbacks = [functools.partial(
process_episode, config, logger, mode, train_eps, eval_eps)]
env = wrappers.CollectDataset(env, callbacks)
env = wrappers.RewardObs(env)
return env
def process_episode(config, logger, mode, train_eps, eval_eps, episode):
directory = dict(train=config.traindir, eval=config.evaldir)[mode]
cache = dict(train=train_eps, eval=eval_eps)[mode]
filename = tools.save_episodes(directory, [episode])[0]
length = len(episode['reward']) - 1
score = float(episode['reward'].astype(np.float64).sum())
video = episode['image']
if mode == 'eval':
cache.clear()
if mode == 'train' and config.dataset_size:
total = 0
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
if total <= config.dataset_size - length:
total += len(ep['reward']) - 1
else:
del cache[key]
logger.scalar('dataset_size', total + length)
cache[str(filename)] = episode
print(f'{mode.title()} episode has {length} steps and return {score:.1f}.')
logger.scalar(f'{mode}_return', score)
logger.scalar(f'{mode}_length', length)
logger.scalar(f'{mode}_episodes', len(cache))
if mode == 'eval' or config.expl_gifs:
logger.video(f'{mode}_policy', video[None])
logger.write()
def main(config):
logdir = pathlib.Path(config.logdir).expanduser()
config.traindir = config.traindir or logdir / 'train_eps'
config.evaldir = config.evaldir or logdir / 'eval_eps'
config.steps //= config.action_repeat
config.eval_every //= config.action_repeat
config.log_every //= config.action_repeat
config.time_limit //= config.action_repeat
config.act = getattr(torch.nn, config.act)
print('Logdir', logdir)
logdir.mkdir(parents=True, exist_ok=True)
config.traindir.mkdir(parents=True, exist_ok=True)
config.evaldir.mkdir(parents=True, exist_ok=True)
step = count_steps(config.traindir)
logger = tools.Logger(logdir, config.action_repeat * step)
print('Create envs.')
if config.offline_traindir:
directory = config.offline_traindir.format(**vars(config))
else:
directory = config.traindir
train_eps = tools.load_episodes(directory, limit=config.dataset_size)
if config.offline_evaldir:
directory = config.offline_evaldir.format(**vars(config))
else:
directory = config.evaldir
eval_eps = tools.load_episodes(directory, limit=1)
make = lambda mode: make_env(config, logger, mode, train_eps, eval_eps)
train_envs = [make('train') for _ in range(config.envs)]
eval_envs = [make('eval') for _ in range(config.envs)]
acts = train_envs[0].action_space
config.num_actions = acts.n if hasattr(acts, 'n') else acts.shape[0]
if not config.offline_traindir:
prefill = max(0, config.prefill - count_steps(config.traindir))
print(f'Prefill dataset ({prefill} steps).')
if hasattr(acts, 'discrete'):
random_actor = tools.OneHotDist(torch.zeros_like(torch.Tensor(acts.low))[None])
else:
random_actor = torchd.independent.Independent(
torchd.uniform.Uniform(torch.Tensor(acts.low)[None],
torch.Tensor(acts.high)[None]), 1)
def random_agent(o, d, s, r):
action = random_actor.sample()
logprob = random_actor.log_prob(action)
return {'action': action, 'logprob': logprob}, None
tools.simulate(random_agent, train_envs, prefill)
tools.simulate(random_agent, eval_envs, episodes=1)
logger.step = config.action_repeat * count_steps(config.traindir)
print('Simulate agent.')
train_dataset = make_dataset(train_eps, config)
eval_dataset = make_dataset(eval_eps, config)
agent = Dreamer(config, logger, train_dataset).to(config.device)
agent.requires_grad_(requires_grad=False)
if (logdir / 'latest_model.pt').exists():
agent.load_state_dict(torch.load(logdir / 'latest_model.pt'))
agent._should_pretrain._once = False
state = None
while agent._step < config.steps:
logger.write()
print('Start evaluation.')
video_pred = agent._wm.video_pred(next(eval_dataset))
logger.video('eval_openl', to_np(video_pred))
eval_policy = functools.partial(agent, training=False)
tools.simulate(eval_policy, eval_envs, episodes=1)
print('Start training.')
state = tools.simulate(agent, train_envs, config.eval_every, state=state)
torch.save(agent.state_dict(), logdir / 'latest_model.pt')
for env in train_envs + eval_envs:
try:
env.close()
except Exception:
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--configs', nargs='+', required=True)
args, remaining = parser.parse_known_args()
configs = yaml.safe_load(
(pathlib.Path(sys.argv[0]).parent / 'configs.yaml').read_text())
defaults = {}
for name in args.configs:
defaults.update(configs[name])
parser = argparse.ArgumentParser()
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
arg_type = tools.args_type(value)
parser.add_argument(f'--{key}', type=arg_type, default=arg_type(value))
main(parser.parse_args(remaining))