forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexBinaryHNSW.cpp
325 lines (255 loc) · 7.51 KB
/
IndexBinaryHNSW.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexBinaryHNSW.h>
#include <memory>
#include <cstdlib>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <omp.h>
#include <unordered_set>
#include <queue>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdint.h>
#include <faiss/utils/random.h>
#include <faiss/utils/Heap.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexBinaryFlat.h>
#include <faiss/utils/hamming.h>
#include <faiss/impl/AuxIndexStructures.h>
namespace faiss {
/**************************************************************
* add / search blocks of descriptors
**************************************************************/
namespace {
void hnsw_add_vertices(IndexBinaryHNSW& index_hnsw,
size_t n0,
size_t n, const uint8_t *x,
bool verbose,
bool preset_levels = false) {
HNSW& hnsw = index_hnsw.hnsw;
size_t ntotal = n0 + n;
double t0 = getmillisecs();
if (verbose) {
printf("hnsw_add_vertices: adding %ld elements on top of %ld "
"(preset_levels=%d)\n",
n, n0, int(preset_levels));
}
int max_level = hnsw.prepare_level_tab(n, preset_levels);
if (verbose) {
printf(" max_level = %d\n", max_level);
}
std::vector<omp_lock_t> locks(ntotal);
for(int i = 0; i < ntotal; i++) {
omp_init_lock(&locks[i]);
}
// add vectors from highest to lowest level
std::vector<int> hist;
std::vector<int> order(n);
{ // make buckets with vectors of the same level
// build histogram
for (int i = 0; i < n; i++) {
HNSW::storage_idx_t pt_id = i + n0;
int pt_level = hnsw.levels[pt_id] - 1;
while (pt_level >= hist.size()) {
hist.push_back(0);
}
hist[pt_level] ++;
}
// accumulate
std::vector<int> offsets(hist.size() + 1, 0);
for (int i = 0; i < hist.size() - 1; i++) {
offsets[i + 1] = offsets[i] + hist[i];
}
// bucket sort
for (int i = 0; i < n; i++) {
HNSW::storage_idx_t pt_id = i + n0;
int pt_level = hnsw.levels[pt_id] - 1;
order[offsets[pt_level]++] = pt_id;
}
}
{ // perform add
RandomGenerator rng2(789);
int i1 = n;
for (int pt_level = hist.size() - 1; pt_level >= 0; pt_level--) {
int i0 = i1 - hist[pt_level];
if (verbose) {
printf("Adding %d elements at level %d\n",
i1 - i0, pt_level);
}
// random permutation to get rid of dataset order bias
for (int j = i0; j < i1; j++) {
std::swap(order[j], order[j + rng2.rand_int(i1 - j)]);
}
#pragma omp parallel
{
VisitedTable vt (ntotal);
std::unique_ptr<DistanceComputer> dis(
index_hnsw.get_distance_computer()
);
int prev_display = verbose && omp_get_thread_num() == 0 ? 0 : -1;
#pragma omp for schedule(dynamic)
for (int i = i0; i < i1; i++) {
HNSW::storage_idx_t pt_id = order[i];
dis->set_query((float *)(x + (pt_id - n0) * index_hnsw.code_size));
hnsw.add_with_locks(*dis, pt_level, pt_id, locks, vt);
if (prev_display >= 0 && i - i0 > prev_display + 10000) {
prev_display = i - i0;
printf(" %d / %d\r", i - i0, i1 - i0);
fflush(stdout);
}
}
}
i1 = i0;
}
FAISS_ASSERT(i1 == 0);
}
if (verbose) {
printf("Done in %.3f ms\n", getmillisecs() - t0);
}
for(int i = 0; i < ntotal; i++)
omp_destroy_lock(&locks[i]);
}
} // anonymous namespace
/**************************************************************
* IndexBinaryHNSW implementation
**************************************************************/
IndexBinaryHNSW::IndexBinaryHNSW()
{
is_trained = true;
}
IndexBinaryHNSW::IndexBinaryHNSW(int d, int M)
: IndexBinary(d),
hnsw(M),
own_fields(true),
storage(new IndexBinaryFlat(d))
{
is_trained = true;
}
IndexBinaryHNSW::IndexBinaryHNSW(IndexBinary *storage, int M)
: IndexBinary(storage->d),
hnsw(M),
own_fields(false),
storage(storage)
{
is_trained = true;
}
IndexBinaryHNSW::~IndexBinaryHNSW() {
if (own_fields) {
delete storage;
}
}
void IndexBinaryHNSW::train(idx_t n, const uint8_t *x)
{
// hnsw structure does not require training
storage->train(n, x);
is_trained = true;
}
void IndexBinaryHNSW::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const
{
#pragma omp parallel
{
VisitedTable vt(ntotal);
std::unique_ptr<DistanceComputer> dis(get_distance_computer());
#pragma omp for
for(idx_t i = 0; i < n; i++) {
idx_t *idxi = labels + i * k;
float *simi = (float *)(distances + i * k);
dis->set_query((float *)(x + i * code_size));
maxheap_heapify(k, simi, idxi);
hnsw.search(*dis, k, idxi, simi, vt);
maxheap_reorder(k, simi, idxi);
}
}
#pragma omp parallel for
for (int i = 0; i < n * k; ++i) {
distances[i] = std::round(((float *)distances)[i]);
}
}
void IndexBinaryHNSW::add(idx_t n, const uint8_t *x)
{
FAISS_THROW_IF_NOT(is_trained);
int n0 = ntotal;
storage->add(n, x);
ntotal = storage->ntotal;
hnsw_add_vertices(*this, n0, n, x, verbose,
hnsw.levels.size() == ntotal);
}
void IndexBinaryHNSW::reset()
{
hnsw.reset();
storage->reset();
ntotal = 0;
}
void IndexBinaryHNSW::reconstruct(idx_t key, uint8_t *recons) const
{
storage->reconstruct(key, recons);
}
namespace {
template<class HammingComputer>
struct FlatHammingDis : DistanceComputer {
const int code_size;
const uint8_t *b;
size_t ndis;
HammingComputer hc;
float operator () (idx_t i) override {
ndis++;
return hc.hamming(b + i * code_size);
}
float symmetric_dis(idx_t i, idx_t j) override {
return HammingComputerDefault(b + j * code_size, code_size)
.hamming(b + i * code_size);
}
explicit FlatHammingDis(const IndexBinaryFlat& storage)
: code_size(storage.code_size),
b(storage.xb.data()),
ndis(0),
hc() {}
// NOTE: Pointers are cast from float in order to reuse the floating-point
// DistanceComputer.
void set_query(const float *x) override {
hc.set((uint8_t *)x, code_size);
}
~FlatHammingDis() override {
#pragma omp critical
{
hnsw_stats.ndis += ndis;
}
}
};
} // namespace
DistanceComputer *IndexBinaryHNSW::get_distance_computer() const {
IndexBinaryFlat *flat_storage = dynamic_cast<IndexBinaryFlat *>(storage);
FAISS_ASSERT(flat_storage != nullptr);
switch(code_size) {
case 4:
return new FlatHammingDis<HammingComputer4>(*flat_storage);
case 8:
return new FlatHammingDis<HammingComputer8>(*flat_storage);
case 16:
return new FlatHammingDis<HammingComputer16>(*flat_storage);
case 20:
return new FlatHammingDis<HammingComputer20>(*flat_storage);
case 32:
return new FlatHammingDis<HammingComputer32>(*flat_storage);
case 64:
return new FlatHammingDis<HammingComputer64>(*flat_storage);
default:
if (code_size % 8 == 0) {
return new FlatHammingDis<HammingComputerM8>(*flat_storage);
} else if (code_size % 4 == 0) {
return new FlatHammingDis<HammingComputerM4>(*flat_storage);
}
}
return new FlatHammingDis<HammingComputerDefault>(*flat_storage);
}
} // namespace faiss