-
Notifications
You must be signed in to change notification settings - Fork 12
/
modeling.py
403 lines (349 loc) · 18.8 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import numpy as np
import torch
import torch.nn as nn
from utils import Config
from transformers import AutoTokenizer, AutoModel
class AutoModelForSequenceClassification(nn.Module):
"""Base model for sequence classification"""
def __init__(self, args, Model, config, num_labels=2):
"""Initialize the model"""
super(AutoModelForSequenceClassification, self).__init__()
self.num_labels = num_labels
self.encoder = Model
self.config = config
self.dropout = nn.Dropout(args.drop_ratio)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.logsoftmax = nn.LogSoftmax(dim=1)
self._init_weights(self.classifier)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids,
target_mask=None,
token_type_ids=None,
attention_mask=None,
labels=None,
head_mask=None,
):
"""
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary
`target_mask`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target wor. 1 for target word and 0 otherwise.
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices
selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1].
It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch.
It's the mask that we typically use for attention when a batch has varying length sentences.
`labels`: optional labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
"""
outputs = self.encoder(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
logits = self.logsoftmax(logits)
if labels is not None:
loss_fct = nn.NLLLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
return logits
class AutoModelForTokenClassification(nn.Module):
"""Base model for token classification"""
def __init__(self, args, Model, config, num_labels=2):
"""Initialize the model"""
super(AutoModelForTokenClassification, self).__init__()
self.num_labels = num_labels
self.bert = Model
self.config = config
self.dropout = nn.Dropout(args.drop_ratio)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.logsoftmax = nn.LogSoftmax(dim=1)
self._init_weights(self.classifier)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids,
target_mask,
token_type_ids=None,
attention_mask=None,
labels=None,
head_mask=None,
):
"""
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary
`target_mask`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target wor. 1 for target word and 0 otherwise.
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices
selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1].
It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch.
It's the mask that we typically use for attention when a batch has varying length sentences.
`labels`: optional labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
"""
outputs = self.bert(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask,
)
sequence_output = outputs[0] # [batch, max_len, hidden]
target_output = sequence_output * target_mask.unsqueeze(2)
target_output = self.dropout(target_output)
target_output = target_output.sum(1) / target_mask.sum() # [batch, hideen]
logits = self.classifier(target_output)
logits = self.logsoftmax(logits)
if labels is not None:
loss_fct = nn.NLLLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
return logits
class AutoModelForSequenceClassification_SPV(nn.Module):
"""MelBERT with only SPV"""
def __init__(self, args, Model, config, num_labels=2):
"""Initialize the model"""
super(AutoModelForSequenceClassification_SPV, self).__init__()
self.num_labels = num_labels
self.encoder = Model
self.config = config
self.dropout = nn.Dropout(args.drop_ratio)
self.classifier = nn.Linear(config.hidden_size * 2, num_labels)
self.logsoftmax = nn.LogSoftmax(dim=1)
self._init_weights(self.classifier)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids,
target_mask,
token_type_ids=None,
attention_mask=None,
labels=None,
head_mask=None,
):
"""
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary
`target_mask`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target wor. 1 for target word and 0 otherwise.
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices
selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1].
`labels`: optional labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
"""
outputs = self.encoder(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask,
)
sequence_output = outputs[0] # [batch, max_len, hidden]
pooled_output = outputs[1] # [batch, hidden]
# Get target ouput with target mask
target_output = sequence_output * target_mask.unsqueeze(2) # [batch, hidden]
# dropout
target_output = self.dropout(target_output)
pooled_output = self.dropout(pooled_output)
# Get mean value of target output if the target output consistst of more than one token
target_output = target_output.mean(1)
logits = self.classifier(torch.cat([target_output, pooled_output], dim=1))
logits = self.logsoftmax(logits)
if labels is not None:
loss_fct = nn.NLLLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
return logits
class AutoModelForSequenceClassification_MIP(nn.Module):
"""MelBERT with only MIP"""
def __init__(self, args, Model, config, num_labels=2):
"""Initialize the model"""
super(AutoModelForSequenceClassification_MIP, self).__init__()
self.num_labels = num_labels
self.encoder = Model
self.config = config
self.dropout = nn.Dropout(args.drop_ratio)
self.args = args
self.classifier = nn.Linear(config.hidden_size * 2, num_labels)
self.logsoftmax = nn.LogSoftmax(dim=1)
self._init_weights(self.classifier)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids,
input_ids_2,
target_mask,
target_mask_2,
attention_mask_2,
token_type_ids=None,
attention_mask=None,
labels=None,
head_mask=None,
):
"""
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the first input token indices in the vocabulary
`input_ids_2`: a torch.LongTensor of shape [batch_size, sequence_length] with the second input token indicies
`target_mask`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target word in the first input. 1 for target word and 0 otherwise.
`target_mask_2`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target word in the second input. 1 for target word and 0 otherwise.
`attention_mask_2`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1] for the second input.
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices
selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1] for the first input.
`labels`: optional labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
"""
# First encoder for full sentence
outputs = self.encoder(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask,
)
sequence_output = outputs[0] # [batch, max_len, hidden]
# Get target ouput with target mask
target_output = sequence_output * target_mask.unsqueeze(2)
target_output = self.dropout(target_output)
target_output = target_output.sum(1) / target_mask.sum() # [batch, hidden]
# Second encoder for only the target word
outputs_2 = self.encoder(input_ids_2, attention_mask=attention_mask_2, head_mask=head_mask)
sequence_output_2 = outputs_2[0] # [batch, max_len, hidden]
# Get target ouput with target mask
target_output_2 = sequence_output_2 * target_mask_2.unsqueeze(2)
target_output_2 = self.dropout(target_output_2)
target_output_2 = target_output_2.sum(1) / target_mask_2.sum()
logits = self.classifier(torch.cat([target_output_2, target_output], dim=1))
logits = self.logsoftmax(logits)
if labels is not None:
loss_fct = nn.NLLLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
return logits
class AutoModelForSequenceClassification_SPV_MIP(nn.Module):
"""MelBERT"""
def __init__(self, args, Model, config, num_labels=2):
"""Initialize the model"""
super(AutoModelForSequenceClassification_SPV_MIP, self).__init__()
self.num_labels = num_labels
self.encoder = Model
self.config = config
self.dropout = nn.Dropout(args.drop_ratio)
self.args = args
self.SPV_linear = nn.Linear(config.hidden_size * 2, args.classifier_hidden)
self.MIP_linear = nn.Linear(config.hidden_size * 2, args.classifier_hidden)
self.classifier = nn.Linear(args.classifier_hidden * 2, num_labels)
self._init_weights(self.SPV_linear)
self._init_weights(self.MIP_linear)
self.logsoftmax = nn.LogSoftmax(dim=1)
self._init_weights(self.classifier)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def forward(
self,
input_ids,
input_ids_2,
target_mask,
target_mask_2,
attention_mask_2,
token_type_ids=None,
attention_mask=None,
labels=None,
head_mask=None,
):
"""
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the first input token indices in the vocabulary
`input_ids_2`: a torch.LongTensor of shape [batch_size, sequence_length] with the second input token indicies
`target_mask`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target word in the first input. 1 for target word and 0 otherwise.
`target_mask_2`: a torch.LongTensor of shape [batch_size, sequence_length] with the mask for target word in the second input. 1 for target word and 0 otherwise.
`attention_mask_2`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1] for the second input.
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices
selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1] for the first input.
`labels`: optional labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
"""
# First encoder for full sentence
outputs = self.encoder(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask,
)
sequence_output = outputs[0] # [batch, max_len, hidden]
pooled_output = outputs[1] # [batch, hidden]
# Get target ouput with target mask
target_output = sequence_output * target_mask.unsqueeze(2)
# dropout
target_output = self.dropout(target_output)
pooled_output = self.dropout(pooled_output)
target_output = target_output.mean(1) # [batch, hidden]
# Second encoder for only the target word
outputs_2 = self.encoder(input_ids_2, attention_mask=attention_mask_2, head_mask=head_mask)
sequence_output_2 = outputs_2[0] # [batch, max_len, hidden]
# Get target ouput with target mask
target_output_2 = sequence_output_2 * target_mask_2.unsqueeze(2)
target_output_2 = self.dropout(target_output_2)
target_output_2 = target_output_2.mean(1)
# Get hidden vectors each from SPV and MIP linear layers
SPV_hidden = self.SPV_linear(torch.cat([pooled_output, target_output], dim=1))
MIP_hidden = self.MIP_linear(torch.cat([target_output_2, target_output], dim=1))
logits = self.classifier(self.dropout(torch.cat([SPV_hidden, MIP_hidden], dim=1)))
logits = self.logsoftmax(logits)
if labels is not None:
loss_fct = nn.NLLLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
return logits