-
Notifications
You must be signed in to change notification settings - Fork 22
/
TernausXt.py
executable file
·166 lines (123 loc) · 4.81 KB
/
TernausXt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import models
import torch.nn.functional as F
from ResNeXt import resnext101_32x4d
nonlinearity = nn.ReLU
def conv3x3(in_, out):
return nn.Conv2d(in_, out, 3, padding=1)
class ConvRelu(nn.Module):
def __init__(self, in_, out):
super().__init__()
self.conv = conv3x3(in_, out)
self.activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.activation(x)
return x
class TernausXt(nn.Module):
def __init__(self, num_classes, num_channels=3):
super().__init__()
filters = [256, 512, 1024, 2048]
resnet = resnext101_32x4d(num_classes=1000, pretrained='imagenet')
self.stem = resnet.stem
self.encoder1 = resnet.layer1
self.encoder2 = resnet.layer2
self.encoder3 = resnet.layer3
self.encoder4 = resnet.layer4
# Decoder
self.decoder4 = DecoderBlockV2(filters[3], filters[3]//4, filters[2])
self.decoder3 = DecoderBlockV2(filters[2] + filters[2], (filters[2] + filters[2])//4, filters[1])
self.decoder2 = DecoderBlockV2(filters[1] + filters[1], (filters[1] + filters[1])//4, filters[0])
self.decoder1 = DecoderBlockV2(filters[0] + filters[0], (filters[0] + filters[0])//4, filters[0])
# Final Classifier
self.finaldeconv1 = nn.ConvTranspose2d(filters[0], 32, 3, stride=2)
self.finalrelu1 = nonlinearity(inplace=True)
self.finalconv2 = nn.Conv2d(32, 32, 3)
self.finalrelu2 = nonlinearity(inplace=True)
self.finalconv3 = nn.Conv2d(32, num_classes, 2, padding=1)
# noinspection PyCallingNonCallable
def forward(self, x):
# Encoder
x = self.stem(x)
# print('stem, ', x.size())
e1 = self.encoder1(x)
# print('e1, ', e1.size())
e2 = self.encoder2(e1)
# print('e2, ', e2.size())
e3 = self.encoder3(e2)
# print('e3, ', e3.size())
e4 = self.encoder4(e3)
# print('e4, ', e4.size())
# Decoder with Skip Connections
# change from + to cat
d4 = torch.cat([self.decoder4(e4), e3], 1)
# d4 = e3
d3 = torch.cat([self.decoder3(d4), e2], 1)
d2 = torch.cat([self.decoder2(d3), e1], 1)
d1 = self.decoder1(d2)
# Final Classification
f1 = self.finaldeconv1(d1)
f2 = self.finalrelu1(f1)
f3 = self.finalconv2(f2)
f4 = self.finalrelu2(f3)
f5 = self.finalconv3(f4)
# return f5
return F.sigmoid(f5)
class DecoderBlock(nn.Module):
def __init__(self, in_channels, n_filters):
super().__init__()
# B, C, H, W -> B, C/4, H, W
self.conv1 = nn.Conv2d(in_channels, in_channels // 4, 1)
self.norm1 = nn.BatchNorm2d(in_channels // 4)
self.relu1 = nonlinearity(inplace=True)
# B, C/4, H, W -> B, C/4, H, W
self.deconv2 = nn.ConvTranspose2d(in_channels // 4, in_channels // 4, 3,
stride=2, padding=1, output_padding=1)
self.norm2 = nn.BatchNorm2d(in_channels // 4)
self.relu2 = nonlinearity(inplace=True)
# B, C/4, H, W -> B, C, H, W
self.conv3 = nn.Conv2d(in_channels // 4, n_filters, 1)
self.norm3 = nn.BatchNorm2d(n_filters)
self.relu3 = nonlinearity(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu1(x)
x = self.deconv2(x)
x = self.norm2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.norm3(x)
x = self.relu3(x)
return x
class DecoderBlockV2(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, is_deconv=True):
super(DecoderBlockV2, self).__init__()
self.in_channels = in_channels
if is_deconv:
"""
Paramaters for Deconvolution were chosen to avoid artifacts, following
link https://distill.pub/2016/deconv-checkerboard/
"""
self.block = nn.Sequential(
ConvRelu(in_channels, middle_channels),
nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=4, stride=2,
padding=1),
nn.ReLU(inplace=True)
)
else:
self.block = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear'),
ConvRelu(in_channels, out_channels)
# ConvRelu(middle_channels, out_channels),
)
def forward(self, x):
return self.block(x)
if __name__ == '__main__':
input1 = torch.randn(1,3,512,512)
input1 = Variable(input1)
model = TernausXt(num_classes=1)
output1 = model(input1)
print(output1.size())