-
Notifications
You must be signed in to change notification settings - Fork 7
/
kernels.py
1286 lines (1190 loc) · 39.7 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
import os
import numpy
from sys import exit
import pdb
class Kernels:
"""
Linear kernel models
"""
def __init__(
self,
vza,
sza,
raa,
critical=1,
RossHS=True,
RecipFlag=True,
HB=2.0,
BR=1.0,
MODISSPARSE=True,
MODISDENSE=False,
RossType="Thick",
normalise=1,
normalize=0,
LiType="Transit",
doIntegrals=True,
BSAangles=[],
nbar=45.0,
):
"""
The class creator sets up the kernels for some angle set. Default Li is MODISSPARSE parameter set
The kernels are accessible from:
self.Isotropic
self.Ross
self.Li
The angles are accesible from:
self.vza (or self.vzaDegrees)
self.sza (or self.szaDegrees)
self.raa (or self.raaDegrees)
N.B. Hot spot direction is vza == sza and raa = 0.0
Kernels integrals are acessible from:
self.BSAangles (angles in degrees)
self.BSA_Isotropic (directional-hemispherical integral of self.Isotropic)
self.BSA_Ross (directional-hemispherical integral of self.Ross)
self.BSA_Li (directional-hemispherical integral of self.Li)
self.WSA_Isotropic (bi-hemispherical integral of self.Isotropic)
self.WSA_Ross (bi-hemispherical integral of self.Ross)
self.WSA_Li (bi-hemispherical integral of self.Li)
N.B. You need to set the doIntegrals flag to True on creating an instance of the kernels class if you
want access to integrals. The processing takes a bit of time.
Printing methods are available:
self.printIntegrals(header=True,reflectance=False)
self.printKernels(header=True,reflectance=False)
Required parameters:
@param vza: an array containg view zenith angles in degrees
@param sza: an array containing solar zenith angles in degrees
@param raa: an array containg relative azimuth angles in degrees
Options:
@option critical=1: set to 1 to exit on error, 0 not to
@option RecipFlag=True: Li reciprocal flag
@option HB: Li kernel parameter HB
@option BR: Li kernel parameter
@option MODISSPARSE: set to True for default MODIS Li Sparse parameters (overrides BR and HB to 2.0 and 1.0)
@option MODISDENSE: set to True for default MODIS Li Dense parameters (override BR and HB to 2.0 and 2.5)
@option RossType: set to 'Thin' for Ross Thin (default) else 'Thick'
@option LiType: set to 'Sparse' for LiSparse (default). Other options: 'Roujean', 'Dense'
@option normalise: set to 1 to make kernels 0 at nadir view illumination (default), set to 0 for no normalisation (can also use US spelling, i.e. normalize)
@option doIntegrals: set to True to calculate integrals of kernels numerically. Set to False not to calculate them. At some point will have Approx flag here as well.
@option BSAangles: solar zenith angles at which to calculate directional-hemispherical integral of kernels (default 0-89 in steps of 1 degree). Units: degrees.
@option nbar: the sza at which the isotropic term is set to if normalise=1 is turned on (default 0)
Notes:
Requires numpy. If you do integrals, this also requires scipy (or rather scipy.integrate)
If you want to mimic the results in Wanner et al. 1995, I've set a special function called self.mimic at the end here.
"""
self.__setup(
critical=critical,
RecipFlag=RecipFlag,
RossHS=RossHS,
HB=HB,
BR=BR,
MODISSPARSE=MODISSPARSE,
MODISDENSE=MODISDENSE,
RossType=RossType,
normalise=normalise,
normalize=normalize,
LiType=LiType,
doIntegrals=doIntegrals,
BSAangles=BSAangles,
nbar=nbar,
)
self.setAngleInfo(vza, sza, raa)
self.__doKernels()
self.__postProcess()
def __setup(
self,
critical=1,
RecipFlag=True,
RossHS=True,
HB=2.0,
BR=1.0,
MODISSPARSE=True,
MODISDENSE=False,
RossType="Thick",
normalise=1,
normalize=0,
LiType="Sparse",
doIntegrals=True,
BSAangles=[],
nbar=0.0,
):
self.nbar = nbar
self.__NEARLYZERO = 1e-20
self.critical = critical
self.FILE = -1
self.outputFile = ""
# kernel options etc.
self.LiType = LiType
self.RossHS = RossHS
self.doIntegrals = doIntegrals
if MODISDENSE == True:
LiType = "Dense"
self.HB = 2.0
self.BR = 2.5
else:
if MODISSPARSE == True:
LiType = "Sparse"
self.HB = 2.0
self.BR = 1.0
else:
self.HB = HB
self.BR = BR
# self.LiType = LiType
self.RossType = RossType
self.normalise = normalise
self.RecipFlag = RecipFlag
# some useful numbers
self.__M_PI = numpy.pi
self.__M_PI_2 = self.__M_PI * 0.5
self.__M_PI_4 = self.__M_PI * 0.25
self.__M_1_PI = 1.0 / self.__M_PI
self.normalise = 0
self.__integrateKernels(BSAangles=BSAangles)
if normalise >= 1 or normalize >= 1:
self.normalise = max(normalise, normalize)
def __postProcess(self):
"""
Private method for dealing with normalisation
"""
self.LiNorm = 0.0
self.RossNorm = 0.0
self.IsotropicNorm = 0.0
# if we are normalising the last element of self.Isotropic, self.Ross and self.Li contain the nadir-nadir kernel
if self.normalise >= 1:
# normalise nbar-nadir (so kernel is 0 at nbar-nadir)
self.RossNorm = self.Ross[-1]
self.LiNorm = self.Li[-1]
self.Ross = self.Ross - self.RossNorm
self.Li = self.Li - self.LiNorm
# depreciate length of arrays (well, teh ones we'll use again in any case)
self.Ross = self.Ross[0:-1]
self.Li = self.Li[0:-1]
self.Isotropic = self.Isotropic[0:-1]
self.vzaDegrees = self.vzaDegrees[0:-1]
self.szaDegrees = self.szaDegrees[0:-1]
self.raaDegrees = self.raaDegrees[0:-1]
self.N = len(self.vzaDegrees)
self.vza = self.vza[0:-1]
self.sza = self.sza[0:-1]
self.raa = self.raa[0:-1]
def __doKernels(self):
"""
Private method to run the various kernel methods
"""
# the kernels
self.IsotropicKernel()
self.RossKernel()
self.LiKernel()
def setAngleInfo(self, vza, sza, raa):
"""
Private method to store and organise the input angle data
"""
self.vzaDegrees = numpy.array([vza]).flatten()
self.szaDegrees = numpy.array([sza]).flatten()
self.raaDegrees = numpy.array([raa]).flatten()
self.N = len(self.vzaDegrees)
if self.N != len(self.szaDegrees) or self.N != len(self.raaDegrees):
self.error(
"kernels: inconsistent number of samples in vza, sza and raa data: "
+ str(len(self.vzaDegrees))
+ ", "
+ str(len(self.szaDegrees))
+ ", "
+ str(len(self.raaDegrees)),
critical=self.critical,
)
print(self.vzaDegrees)
print(self.szaDegrees)
print(self.raaDegrees)
return [-1]
if self.normalise >= 1:
# calculate nadir term by extending array
self.vzaDegrees = numpy.array(list(self.vzaDegrees) + [0.0]).flatten()
self.szaDegrees = numpy.array(list(self.szaDegrees) + [self.nbar]).flatten()
self.raaDegrees = numpy.array(list(self.raaDegrees) + [0.0]).flatten()
# not N is one too many now
self.N = len(self.vzaDegrees)
self.vza = self.dtor(self.vzaDegrees)
self.sza = self.dtor(self.szaDegrees) # -1 to make HS direction for raa = 0
self.raa = self.dtor(self.raaDegrees)
w = numpy.where(self.vza < 0)[0]
self.vza[w] = -self.vza[w]
self.raa[w] = self.raa[w] + numpy.pi
w = numpy.where(self.sza < 0)[0]
self.sza[w] = -self.sza[w]
self.raa[w] = self.raa[w] + numpy.pi
def __integrateKernels(self, BSAangles=[]):
"""
Private method to call integration functions for the kernels
NB - this overwrites all kernel info ... so be careful how/where you call it
@option: BSAangles=[] allows the user to set the sza angles at which directional-hemispherical intergal is calculated, else steps of 1 degree from 0 to 89 (though I wouldnt trust it down to 90)
This function can be rather slow, so using fewer samples or an approximate function may be a god idea
"""
if self.doIntegrals == False:
return
import scipy.integrate
if BSAangles == []:
BSAangles = numpy.array(list(range(90))) * 1.0
self.BSAangles = numpy.array(BSAangles).flatten()
# isotropic integral
self.BSA_Isotropic = numpy.zeros(len(self.BSAangles)) + 1.0
self.BSA_Ross = numpy.zeros(len(self.BSAangles))
self.BSA_Li = numpy.zeros(len(self.BSAangles))
self.BSA_Isotropic_error = numpy.zeros(len(self.BSAangles))
self.BSA_Ross_error = numpy.zeros(len(self.BSAangles))
self.BSA_Li_error = numpy.zeros(len(self.BSAangles))
i = 0
mu = numpy.cos(self.BSAangles * numpy.pi / 180.0)
for sza in self.BSAangles:
# ross integral
self.BSA_Ross[i], self.BSA_Ross_error[i] = scipy.integrate.dblquad(
RossFunctionForIntegral, 0.0, 1.0, __gfun, __hfun, args=(sza, self)
)
self.BSA_Li[i], self.BSA_Li_error[i] = scipy.integrate.dblquad(
LiFunctionForIntegral, 0.0, 1.0, __gfun, __hfun, args=(sza, self)
)
i = i + 1
self.WSA_Ross = -2.0 * scipy.integrate.simps(self.BSA_Ross * mu, mu)
self.WSA_Li = -2.0 * scipy.integrate.simps(self.BSA_Li * mu, mu)
return
def __GetPhaang(self):
"""
Private method to calculate Phase angle component of kernel
"""
self.__cosphaang = (
self.__cos1 * self.__cos2 + self.__sin1 * self.__sin2 * self.__cos3
)
# better check the bounds before arccos ... just to be safe
w = numpy.where(self.__cosphaang < -1)[0]
self.__cosphaang[w] = -1.0
w = numpy.where(self.__cosphaang > 1)[0]
self.__cosphaang[w] = 1.0
self.__phaang = numpy.arccos(self.__cosphaang)
self.__sinphaang = numpy.sin(self.__phaang)
return
def __RossKernelPart(self):
"""
Private method to calculate main part of Ross kernel
"""
self.__cos1 = numpy.cos(self.vza)
self.__cos2 = numpy.cos(self.sza)
self.__sin1 = numpy.sin(self.vza)
self.__sin2 = numpy.sin(self.sza)
self.__cos3 = numpy.cos(self.raa)
self.__GetPhaang()
self.rosselement = (
self.__M_PI_2 - self.__phaang
) * self.__cosphaang + self.__sinphaang
return
def GetDistance(self):
"""
Private method to get distance component of Li kernels
"""
temp = (
self.__tan1 * self.__tan1
+ self.__tan2 * self.__tan2
- 2.0 * self.__tan1 * self.__tan2 * self.__cos3
)
w = numpy.where(temp < 0)[0]
temp[w] = 0.0
self.__temp = temp # used by other functions ??
distance = numpy.sqrt(temp)
return distance
def GetpAngles(self, tan1):
"""
Private method to do B/R transformation for ellipse shape
"""
t = self.BR * tan1
w = numpy.where(t < 0.0)[0]
t[w] = 0.0
angp = numpy.arctan(t)
s = numpy.sin(angp)
c = numpy.cos(angp)
# have to make sure c isnt 0
w = numpy.where(c == 0)[0]
c[w] = self.__NEARLYZERO
return c, s, t
def GetOverlap(self):
"""
Private method to do HB ratio transformation
"""
self.__temp = 1.0 / self.__cos1 + 1.0 / self.__cos2
self.__cost = (
self.HB
* numpy.sqrt(
self.__distance * self.__distance
+ self.__tan1
* self.__tan1
* self.__tan2
* self.__tan2
* self.__sin3
* self.__sin3
)
/ self.__temp
)
w = numpy.where(self.__cost < -1)[0]
self.__cost[w] = -1.0
w = numpy.where(self.__cost > 1.0)[0]
self.__cost[w] = 1.0
self.__tvar = numpy.arccos(self.__cost)
self.__sint = numpy.sin(self.__tvar)
self.__overlap = (
self.__M_1_PI * (self.__tvar - self.__sint * self.__cost) * self.__temp
)
w = numpy.where(self.__overlap < 0)[0]
self.__overlap[w] = 0.0
return
def RoujeanKernel(self):
"""
Private method - call to calculate Roujean shadowing kernel
"""
# first make sure its in range 0 to 2 pi
self.__phi = numpy.abs((self.raa % (2.0 * numpy.pi)))
self.__cos3 = numpy.cos(self.__phi)
self.__sin3 = numpy.sin(self.__phi)
self.__tan1 = numpy.tan(self.sza)
self.__tan2 = numpy.tan(self.vza)
self.__distance = self.GetDistance()
self.Li = 0.5 * self.__M_1_PI * (
(self.__M_PI - self.__phi) * self.__cos3 + self.__sin3
) * self.__tan1 * self.__tan2 - self.__M_1_PI * (
self.__tan1 + self.__tan2 + self.__distance
)
return
def LiKernel(self):
"""
Private method - call to calculate Li Kernel
"""
# at some point add in LiGround kernel & LiTransit
if self.LiType == "Roujean":
return self.RoujeanKernel()
# first make sure its in range 0 to 2 pi
self.__phi = numpy.abs((self.raa % (2.0 * numpy.pi)))
self.__cos3 = numpy.cos(self.__phi)
self.__sin3 = numpy.sin(self.__phi)
self.__tanti = numpy.tan(self.sza)
self.__tantv = numpy.tan(self.vza)
self.__cos1, self.__sin1, self.__tan1 = self.GetpAngles(self.__tantv)
self.__cos2, self.__sin2, self.__tan2 = self.GetpAngles(self.__tanti)
self.__GetPhaang() # sets cos & sin phase angle terms
self.__distance = self.GetDistance() # sets self.temp
self.GetOverlap() # also sets self.temp
if self.LiType == "Sparse":
if self.RecipFlag == True:
self.Li = (
self.__overlap
- self.__temp
+ 0.5 * (1.0 + self.__cosphaang) / self.__cos1 / self.__cos2
)
else:
self.Li = (
self.__overlap
- self.__temp
+ 0.5 * (1.0 + self.__cosphaang) / self.__cos1
)
else:
if self.LiType == "Dense":
if self.RecipFlag:
self.Li = (1.0 + self.__cosphaang) / (
self.__cos1 * self.__cos2 * (self.__temp - self.__overlap)
) - 2.0
else:
self.Li = (1.0 + self.__cosphaang) / (
self.__cos1 * (self.__temp - self.__overlap)
) - 2.0
else:
B = self.__temp - self.__overlap
w = numpy.where(B <= 2.0)
self.Li = B * 0.0
if self.RecipFlag == True:
Li = (
self.__overlap
- self.__temp
+ 0.5 * (1.0 + self.__cosphaang) / self.__cos1 / self.__cos2
)
else:
Li = (
self.__overlap
- self.__temp
+ 0.5 * (1.0 + self.__cosphaang) / self.__cos1
)
self.Li[w] = Li[w]
w = numpy.where(B > 2.0)
if self.RecipFlag:
Li = (1.0 + self.__cosphaang) / (
self.__cos1 * self.__cos2 * (self.__temp - self.__overlap)
) - 2.0
else:
Li = (1.0 + self.__cosphaang) / (
self.__cos1 * (self.__temp - self.__overlap)
) - 2.0
self.Li[w] = Li[w]
return
def IsotropicKernel(self):
"""
Public method - call to calculate Isotropic kernel
"""
# default behaviour
self.Isotropic = numpy.zeros(self.N) + 1.0
return
def RossThin(self):
"""
Public method - call to calculate RossThin kernel
"""
self.__RossKernelPart()
self.rosselement = self.rosselement / (self.__cos1 * self.__cos2)
return
def RossThick(self):
"""
Public method - call to calculate RossThick kernel
"""
self.__RossKernelPart()
self.rosselement = self.rosselement / (self.__cos1 + self.__cos2)
return
def RossKernel(self):
"""
Public method - call to calculate Ross Kernel
"""
if self.RossType == "Thin":
self.RossThin()
else:
self.RossThick()
self.Ross = self.rosselement
if self.RossHS != False:
if self.RossHS == True:
self.RossHS = 0.25
self.Ross = self.Ross * (1 + 1 / (1 + self.__phaang / self.RossHS))
def dtor(self, x):
"""
Public method to convert degrees to radians
"""
return x * numpy.pi / 180.0
def rtod(self, x):
"""
Public method to convert radians to degrees
"""
return x * 180.0 / numpy.pi
def error(self, msg, critical=0, newline=1, code=-1):
"""
Public method to do Class error reporting
@param msg: error message
@param critical: set to 1 if require exit (default critical=0)
@param newline: set to 0 if newline not required (default newline=0)
@param code: error code reported on exit if critical error (default code=-1)
"""
if newline == 1:
nl = "\n"
else:
nl = ""
print(msg + nl)
if critical == 1:
exit([code])
def printIntegrals(self, header=True, reflectance=False):
"""
Public method to print kernel integrals (to stdout only at present)
"""
if header == True:
self.printer(
"# "
+ str(self.N)
+ " samples Ross: "
+ self.RossType
+ " Li: "
+ self.LiType
+ " Reciprocal: "
+ str(self.RecipFlag)
+ " normalisation: "
+ str(self.normalise)
+ " HB "
+ str(self.HB)
+ " BR "
+ str(self.BR)
+ "\n"
)
self.printer(
"# WSA: Isotropic 1.0 Ross "
+ str(self.WSA_Ross)
+ " Li "
+ str(self.WSA_Li)
)
self.printer("# 1: SZA (degrees) 2: BSA Isotropic 3: BSA Ross 4: BSA Li")
if reflectance == True:
self.printer(" ")
self.printer("\n")
for i in range(len(self.BSAangles)):
self.printer(
str(self.BSAangles[i])
+ " "
+ str(self.BSA_Isotropic[i])
+ " "
+ str(self.BSA_Ross[i])
+ " "
+ str(self.BSA_Li[i])
)
# print refl data if wanted
if reflectance == True:
self.printer(" ")
self.printer("\n")
return
def printKernels(self, header=True, reflectance=False, file=False):
"""
Public method to print kernel values (to stdout only at present)
"""
if file != False:
if file != self.outputFile and self.FILE != -1:
self.FILE.close()
self.outputFile = file
self.FILE = open(self.outputFile, "w")
if header == True:
self.printer(
"# "
+ str(self.N)
+ " samples Ross: "
+ self.RossType
+ " Li: "
+ self.LiType
+ " Reciprocal: "
+ str(self.RecipFlag)
+ " normalisation: "
+ str(self.normalise)
+ " HB "
+ str(self.HB)
+ " BR "
+ str(self.BR)
+ "\n"
)
self.printer(
"# 1: VZA (degrees) 2: SZA (degrees) 3: RAA (degrees) 4: Isotropic 5: Ross 6: Li"
)
if reflectance == True:
self.printer(" ")
self.printer("\n")
for i in range(self.N):
self.printer(
str(self.vzaDegrees[i])
+ " "
+ str(self.szaDegrees[i])
+ " "
+ str(self.raaDegrees[i])
+ " "
+ str(self.Isotropic[i])
+ " "
+ str(self.Ross[i])
+ " "
+ str(self.Li[i])
)
# print refl data if wanted
if reflectance == True:
self.printer(" ")
self.printer("\n")
return
def printer(self, msg):
"""
Public print method ... make more flexible eg for printing to files at some point
"""
if self.FILE == -1:
print(msg, end=" ")
else:
self.FILE.write(msg)
# some things required for the numerical integration
def _Kernels__gfun(x):
return 0.0
def _Kernels__hfun(x):
return 2.0 * numpy.pi
def RossFunctionForIntegral(phi, mu, sza, self):
# print phi
# print mu
# print sza
# print '========'
vza = numpy.arccos(mu)
raa = self.rtod(phi)
self.setAngleInfo(vza, sza, raa)
self.RossKernel()
return mu * self.Ross[0] / numpy.pi
def LiFunctionForIntegral(phi, mu, sza, self):
# print phi
# print mu
# print sza
# print '========'
vza = numpy.arccos(mu)
raa = self.rtod(phi)
self.setAngleInfo(vza, sza, raa)
self.LiKernel()
return mu * self.Li[0] / numpy.pi
# import pylab
def readASCII(inputFile, dobands=False):
FILE = open(inputFile, "r")
header = FILE.readline()
nBands = int(header.split()[2])
bands = header.split()[3 : 3 + nBands]
Bands = numpy.zeros(nBands)
for i in range(nBands):
Bands[i] = float(bands[i])
strdata = FILE.readlines()
FILE.close()
N = len(strdata)
DOY = numpy.zeros(N)
FLAG = numpy.zeros(N)
VZA = numpy.zeros(N)
SZA = numpy.zeros(N)
RAA = numpy.zeros(N)
REFL = numpy.zeros([nBands, N])
for i in range(N):
s = strdata[i].split()
DOY[i] = float(s[0])
FLAG[i] = int(s[1])
VZA[i] = float(s[2])
SZA[i] = float(s[4])
RAA[i] = float(s[3]) - float(s[5])
for j in range(nBands):
REFL[j, i] = float(s[j + 6])
w = numpy.where(FLAG == 1)
doy = DOY[w]
vza = VZA[w]
sza = SZA[w]
raa = RAA[w]
refl = REFL[:, w]
if dobands == True:
return vza, sza, raa, refl, doy, Bands
else:
return vza, sza, raa, refl, doy
def readPOLDER(inputFile, type=1):
FILE = open(inputFile, "r")
strdata = FILE.readlines()
FILE.close()
N = len(strdata)
VZA = numpy.zeros(N)
SZA = numpy.zeros(N)
RAA = numpy.zeros(N)
REFL = numpy.zeros([5, N])
for i in range(N):
s = strdata[i].split()
if type == 1:
VZA[i] = float(s[4])
SZA[i] = float(s[2])
RAA[i] = float(s[5])
for j in range(5):
REFL[j, i] = float(s[j + 6])
else:
if type == 2:
VZA[i] = float(s[2])
SZA[i] = float(s[4])
RAA[i] = float(s[5]) - float(s[3])
for j in range(5):
REFL[j, i] = float(s[j + 6])
return VZA, SZA, RAA, REFL
def lutInvertRossHS(
VZA,
SZA,
RAA,
REFL,
N=1000,
fixXi=False,
RossType="Thick",
LiType="Dense",
normalise=1,
RecipFlag=True,
MODISSPARSE=True,
):
if fixXi != False:
N = 1
rhs = numpy.array([fixXi])
else:
rhs = numpy.array(list(range(N))) * 10 * (numpy.pi / 180.0) / N
rmse = numpy.zeros(N)
for i in range(N):
rmse[i], P, FWD, phaseAngle = invertData(
VZA,
SZA,
RAA,
REFL,
RossType=RossType,
LiType=LiType,
RossHS=rhs[i],
normalise=normalise,
RecipFlag=RecipFlag,
MODISSPARSE=MODISSPARSE,
)
i = numpy.argmin(rmse)
RMSE, P, FWD, phaseAngle = invertData(
VZA,
SZA,
RAA,
REFL,
RossType=RossType,
LiType=LiType,
RossHS=rhs[i],
normalise=normalise,
RecipFlag=RecipFlag,
MODISSPARSE=MODISSPARSE,
)
return RMSE, rhs[i], P, numpy.array(FWD), rhs, rmse, phaseAngle
def testLisa(
inputFile, buff=30, LiType="Sparse", RossType="Thick", plot=False, verbose=False
):
bu = [0.004, 0.015, 0.003, 0.004, 0.013, 0.010, 0.006]
vza, sza, raa, refl, doy, bands = readASCII(inputFile, dobands=True)
nbands = len(bands)
if nbands == 4:
bux = [bu[1], bu[4], bu[0], bu[6]]
else:
bux = bu
mind = min(doy)
maxd = max(doy)
w1 = numpy.where(doy >= (mind + buff))
w2 = numpy.where(doy[w1] <= (maxd - buff))
sampledays = doy[w1][w2]
iso = numpy.zeros(len(bux))
isoPost = numpy.zeros(len(bux))
sig = numpy.zeros([len(sampledays), len(bux)])
rel = numpy.zeros([len(sampledays), len(bux)])
RMSE = 1e20
count = 0
mindoy = False
minrmse = False
minP = False
minFWD = False
minrefl = False
# stuff for spectral mixture model
loff = 400.0
lmax = 2000.0
ll = bands - loff
llmax = lmax - loff
lk = ll - ll * ll / (2 * llmax)
lk = lk / max(lk)
K = numpy.matrix(numpy.ones([3, nbands]))
K[1][:] = lk
for dos in sampledays:
K = numpy.matrix(numpy.ones([3, nbands]))
K[1][:] = lk
rmse, P, FWD, refl, idoy, unc = lisaInvert(
vza, sza, raa, refl, doy, dos, LiType=LiType, RossType=RossType
)
# calculate significance of step change in 1st 2 bands
# P[i,6] is the magnitude of step change
dos2 = dos + 1
for i in range(len(bux)):
iso[i] = (
P[i, 0]
+ dos * P[i, 3]
+ dos * dos * P[i, 4]
+ dos * dos * dos * P[i, 5]
)
sig[count][i] = P[i, 6] / (unc * bux[i])
rel[count][i] = P[i, 6] / iso[i]
isoPost[i] = (
P[i, 0]
+ dos2 * P[i, 3]
+ dos2 * dos2 * P[i, 4]
+ dos2 * dos2 * dos2 * P[i, 5]
+ P[i, 6]
)
# do spectral mixture modelling on iso
if nbands == 7:
# loff = 400
# l' = l - loff
# lmax = 2000 - loff
# rhoBurn = a0 + a1(l' - l'^2/(2 lmax)) = a0 + a1 * lk
# lmax =
# post = pre * (1-fcc) + fcc * rhoBurn
# post = pre * (1-fcc) + fcc * a0 + fcc * a1 * lk
# post - pre = A + B * lk - fcc * pre
# where
# A = fcc * a0
# B = fcc * a1
y = numpy.matrix(isoPost - iso)
K[2] = iso
M = K * K.transpose()
MI = M.I
V = K * y.transpose()
# spectral parsamsters
sP = numpy.array((MI * V).transpose())[0]
fcc = -sP[2]
a0 = sP[0] / fcc
a1 = sP[1] / fcc
sBurn = a0 + lk * a1
sFWD = iso * (1 - fcc) + fcc * sBurn
sPre = iso
sPost = isoPost
else:
fcc = 0
a0 = 0
a1 = 0
sBurn = 0
sFWD = 0
sPre = 0
sPost = 0
if nbands == 4:
Test = (
sig[count][0] < 0
and sig[count][1] < 0
and (
(sig[count][2] > sig[count][0] and sig[count][2] > sig[count][1])
or (sig[count][3] > sig[count][0] and sig[count][3] > sig[count][1])
)
)
else:
Test = a0 >= 0 and a1 >= 0 and fcc >= 0
# put in conditions etc...
if Test:
# valid sample
rmse1 = numpy.matrix(rmse)
rmse1 = numpy.array(numpy.sqrt(rmse1 * rmse1.transpose() / len(bux)))[0][0]
thissig = min([sig[count][0], sig[count][1]])
# print dos,thissig
# if mindoy == False or thissig < minsig:
if nbands == 4:
Test2 = mindoy == False or rmse1 < minrmsei1
else:
Test2 = mindoy == False or fcc > maxfcc
if verbose:
print(dos, fcc, a0, a1, thissig, rmse1)
if Test2:
maxpre = sPre
maxpost = sPost
maxfcc = fcc
maxa0 = a0
maxa1 = a1
maxsBurn = sBurn
maxsFWD = sFWD
minsig = thissig
mindoy = dos
minrmse1 = rmse1
minrmse = rmse
minP = P
minFWD = FWD
minrefl = refl
mincount = count
count += 1
if mincount != False:
if nbands == 4:
return (
doy,
minrmse,
minP,
minFWD,
minrefl,
mindoy,
sig[mincount],
rel[mincount],
)
else:
# if plot:
###import pylab
# pylab.plot(bands,maxpre,'bo',label='pre-burn')
# pylab.plot(bands,maxpost,'go',label='post-burn')
###pylab.plot(bands,maxsFWD,'g^',label='fwd model')
###pylab.plot(bands,maxfcc*maxsBurn,'rD',label='fcc * burn signal')
# pylab.legend(loc=0)
# pylab.show()
return (
doy,
minrmse,
minP,
minFWD,
minrefl,
mindoy,
sig[mincount],
rel[mincount],
maxfcc,
maxa0,
maxa1,
)
else:
return False, False, False, False, False, False, False, False
def lisaInvert(
vza, sza, raa, refl, doy, dos, LiType="Sparse", RossType="Thick", xi=False
):
doy2 = doy * doy
doy3 = doy2 * doy
kk = Kernels(
vza,
sza,
raa,
doIntegrals=False,
RossHS=xi,
RossType=RossType,
LiType=LiType,
normalise=1,
RecipFlag=True,
MODISSPARSE=True,
)
K = numpy.ones([7, len(vza)])
K[1, :] = kk.Ross[:]
K[2, :] = kk.Li[:]
K[3, :] = doy
K[4, :] = doy2
K[5, :] = doy3
w = numpy.where(doy <= dos)
K[6, w] = 0.0
# form matrix
K = numpy.matrix(K)
M = K * K.transpose()
MI = M.I
nBands = len(refl[:, 0])