forked from RexYing/gnn-model-explainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
620 lines (566 loc) · 21.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import numpy as np
# GCN basic operation
class GraphConv(nn.Module):
def __init__(
self,
input_dim,
output_dim,
add_self=False,
normalize_embedding=False,
dropout=0.0,
bias=True,
gpu=True,
att=False,
):
super(GraphConv, self).__init__()
self.att = att
self.add_self = add_self
self.dropout = dropout
if dropout > 0.001:
self.dropout_layer = nn.Dropout(p=dropout)
self.normalize_embedding = normalize_embedding
self.input_dim = input_dim
self.output_dim = output_dim
if not gpu:
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim))
if add_self:
self.self_weight = nn.Parameter(
torch.FloatTensor(input_dim, output_dim)
)
if att:
self.att_weight = nn.Parameter(torch.FloatTensor(input_dim, input_dim))
else:
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim).cuda())
if add_self:
self.self_weight = nn.Parameter(
torch.FloatTensor(input_dim, output_dim).cuda()
)
if att:
self.att_weight = nn.Parameter(
torch.FloatTensor(input_dim, input_dim).cuda()
)
if bias:
if not gpu:
self.bias = nn.Parameter(torch.FloatTensor(output_dim))
else:
self.bias = nn.Parameter(torch.FloatTensor(output_dim).cuda())
else:
self.bias = None
# self.softmax = nn.Softmax(dim=-1)
def forward(self, x, adj):
if self.dropout > 0.001:
x = self.dropout_layer(x)
# deg = torch.sum(adj, -1, keepdim=True)
if self.att:
x_att = torch.matmul(x, self.att_weight)
# import pdb
# pdb.set_trace()
att = x_att @ x_att.permute(0, 2, 1)
# att = self.softmax(att)
adj = adj * att
y = torch.matmul(adj, x)
y = torch.matmul(y, self.weight)
if self.add_self:
self_emb = torch.matmul(x, self.self_weight)
y += self_emb
if self.bias is not None:
y = y + self.bias
if self.normalize_embedding:
y = F.normalize(y, p=2, dim=2)
# print(y[0][0])
return y, adj
class GcnEncoderGraph(nn.Module):
def __init__(
self,
input_dim,
hidden_dim,
embedding_dim,
label_dim,
num_layers,
pred_hidden_dims=[],
concat=True,
bn=True,
dropout=0.0,
add_self=False,
args=None,
):
super(GcnEncoderGraph, self).__init__()
self.concat = concat
add_self = add_self
self.bn = bn
self.num_layers = num_layers
self.num_aggs = 1
self.bias = True
self.gpu = args.gpu
if args.method == "attn":
self.att = True
else:
self.att = False
if args is not None:
self.bias = args.bias
self.conv_first, self.conv_block, self.conv_last = self.build_conv_layers(
input_dim,
hidden_dim,
embedding_dim,
num_layers,
add_self,
normalize=True,
dropout=dropout,
)
self.act = nn.ReLU()
self.label_dim = label_dim
torch.random.manual_seed(args.seed)
if concat:
self.pred_input_dim = hidden_dim * (num_layers - 1) + embedding_dim
else:
self.pred_input_dim = embedding_dim
self.pred_model = self.build_pred_layers(
self.pred_input_dim, pred_hidden_dims, label_dim, num_aggs=self.num_aggs
)
for m in self.modules():
if isinstance(m, GraphConv): ### initializes only the graph convolution layers
init.xavier_uniform_(m.weight.data, gain=nn.init.calculate_gain("relu"))
if m.att:
init.xavier_uniform_(
m.att_weight.data, gain=nn.init.calculate_gain("relu")
)
if m.add_self:
init.xavier_uniform_(
m.self_weight.data, gain=nn.init.calculate_gain("relu")
)
if m.bias is not None:
init.constant_(m.bias.data, 0.0)
def build_conv_layers(
self,
input_dim,
hidden_dim,
embedding_dim,
num_layers,
add_self,
normalize=False,
dropout=0.0,
):
conv_first = GraphConv(
input_dim=input_dim,
output_dim=hidden_dim,
add_self=add_self,
normalize_embedding=normalize,
bias=self.bias,
gpu=self.gpu,
att=self.att,
)
conv_block = nn.ModuleList(
[
GraphConv(
input_dim=hidden_dim,
output_dim=hidden_dim,
add_self=add_self,
normalize_embedding=normalize,
dropout=dropout,
bias=self.bias,
gpu=self.gpu,
att=self.att,
)
for i in range(num_layers - 2)
]
)
conv_last = GraphConv(
input_dim=hidden_dim,
output_dim=embedding_dim,
add_self=add_self,
normalize_embedding=normalize,
bias=self.bias,
gpu=self.gpu,
att=self.att,
)
return conv_first, conv_block, conv_last
def build_pred_layers(
self, pred_input_dim, pred_hidden_dims, label_dim, num_aggs=1
):
pred_input_dim = pred_input_dim * num_aggs
if len(pred_hidden_dims) == 0:
pred_model = nn.Linear(pred_input_dim, label_dim)
else:
pred_layers = []
for pred_dim in pred_hidden_dims:
pred_layers.append(nn.Linear(pred_input_dim, pred_dim))
pred_layers.append(self.act)
pred_input_dim = pred_dim
pred_layers.append(nn.Linear(pred_dim, label_dim))
pred_model = nn.Sequential(*pred_layers)
return pred_model
def construct_mask(self, max_nodes, batch_num_nodes):
""" For each num_nodes in batch_num_nodes, the first num_nodes entries of the
corresponding column are 1's, and the rest are 0's (to be masked out).
Dimension of mask: [batch_size x max_nodes x 1]
"""
# masks
packed_masks = [torch.ones(int(num)) for num in batch_num_nodes]
batch_size = len(batch_num_nodes)
out_tensor = torch.zeros(batch_size, max_nodes)
for i, mask in enumerate(packed_masks):
out_tensor[i, : batch_num_nodes[i]] = mask
return out_tensor.unsqueeze(2).cuda()
def apply_bn(self, x):
""" Batch normalization of 3D tensor x
"""
bn_module = nn.BatchNorm1d(x.size()[1])
if self.gpu:
bn_module = bn_module.cuda()
return bn_module(x)
def gcn_forward(
self, x, adj, conv_first, conv_block, conv_last, embedding_mask=None
):
""" Perform forward prop with graph convolution.
Returns:
Embedding matrix with dimension [batch_size x num_nodes x embedding]
The embedding dim is self.pred_input_dim
"""
x, adj_att = conv_first(x, adj)
x = self.act(x)
if self.bn:
x = self.apply_bn(x)
x_all = [x]
adj_att_all = [adj_att]
# out_all = []
# out, _ = torch.max(x, dim=1)
# out_all.append(out)
for i in range(len(conv_block)):
x, adj_att = conv_block[i](x, adj) ### ! adj_att variable does not get updated
x = self.act(x)
if self.bn:
x = self.apply_bn(x)
x_all.append(x)
adj_att_all.append(adj_att) ### adj_att comes from the first layer only
x, adj_att = conv_last(x, adj)
x_all.append(x)
adj_att_all.append(adj_att)
# x_tensor: [batch_size x num_nodes x embedding]
x_tensor = torch.cat(x_all, dim=2)
if embedding_mask is not None:
x_tensor = x_tensor * embedding_mask
self.embedding_tensor = x_tensor
# adj_att_tensor: [batch_size x num_nodes x num_nodes x num_gc_layers]
adj_att_tensor = torch.stack(adj_att_all, dim=3)
return x_tensor, adj_att_tensor
def forward(self, x, adj, batch_num_nodes=None, **kwargs):
# mask
max_num_nodes = adj.size()[1]
if batch_num_nodes is not None:
self.embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
self.embedding_mask = None
# conv
x, adj_att = self.conv_first(x, adj)
x = self.act(x)
if self.bn:
x = self.apply_bn(x)
out_all = []
out, _ = torch.max(x, dim=1)
out_all.append(out)
adj_att_all = [adj_att]
for i in range(self.num_layers - 2):
x, adj_att = self.conv_block[i](x, adj)
x = self.act(x)
if self.bn:
x = self.apply_bn(x)
out, _ = torch.max(x, dim=1)
out_all.append(out)
if self.num_aggs == 2:
out = torch.sum(x, dim=1)
out_all.append(out)
adj_att_all.append(adj_att)
x, adj_att = self.conv_last(x, adj)
adj_att_all.append(adj_att)
# x = self.act(x)
out, _ = torch.max(x, dim=1)
out_all.append(out)
if self.num_aggs == 2:
out = torch.sum(x, dim=1)
out_all.append(out)
if self.concat:
output = torch.cat(out_all, dim=1)
else:
output = out
# adj_att_tensor: [batch_size x num_nodes x num_nodes x num_gc_layers]
adj_att_tensor = torch.stack(adj_att_all, dim=3)
self.embedding_tensor = output
ypred = self.pred_model(output)
# print(output.size())
return ypred, adj_att_tensor
def loss(self, pred, label, type="softmax"):
# softmax + CE
if type == "softmax":
return F.cross_entropy(pred, label, size_average=True)
elif type == "margin":
batch_size = pred.size()[0]
label_onehot = torch.zeros(batch_size, self.label_dim).long().cuda()
label_onehot.scatter_(1, label.view(-1, 1), 1)
return torch.nn.MultiLabelMarginLoss()(pred, label_onehot)
# return F.binary_cross_entropy(F.sigmoid(pred[:,0]), label.float())
class GcnEncoderNode(GcnEncoderGraph):
def __init__(
self,
input_dim,
hidden_dim,
embedding_dim,
label_dim,
num_layers,
pred_hidden_dims=[],
concat=True,
bn=True,
dropout=0.0,
args=None,
):
super(GcnEncoderNode, self).__init__(
input_dim,
hidden_dim,
embedding_dim,
label_dim,
num_layers,
pred_hidden_dims,
concat,
bn,
dropout,
args=args,
)
if hasattr(args, "loss_weight"):
print("Loss weight: ", args.loss_weight)
self.celoss = nn.CrossEntropyLoss(weight=args.loss_weight)
else:
self.celoss = nn.CrossEntropyLoss()
def forward(self, x, adj, batch_num_nodes=None, **kwargs):
# mask
max_num_nodes = adj.size()[1]
### this allows node based batching by masking out all the other vertices?
if batch_num_nodes is not None:
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
embedding_mask = None
self.adj_atts = []
self.embedding_tensor, adj_att = self.gcn_forward(
x, adj, self.conv_first, self.conv_block, self.conv_last, embedding_mask
)
pred = self.pred_model(self.embedding_tensor)
return pred, adj_att
def loss(self, pred, label):
pred = torch.transpose(pred, 1, 2)
return self.celoss(pred, label)
class SoftPoolingGcnEncoder(GcnEncoderGraph):
def __init__(
self,
max_num_nodes,
input_dim,
hidden_dim,
embedding_dim,
label_dim,
num_layers,
assign_hidden_dim,
assign_ratio=0.25,
assign_num_layers=-1,
num_pooling=1,
pred_hidden_dims=[50],
concat=True,
bn=True,
dropout=0.0,
linkpred=True,
assign_input_dim=-1,
args=None,
):
"""
Args:
num_layers: number of gc layers before each pooling
num_nodes: number of nodes for each graph in batch
linkpred: flag to turn on link prediction side objective
"""
super(SoftPoolingGcnEncoder, self).__init__(
input_dim,
hidden_dim,
embedding_dim,
label_dim,
num_layers,
pred_hidden_dims=pred_hidden_dims,
concat=concat,
args=args,
)
add_self = not concat
self.num_pooling = num_pooling
self.linkpred = linkpred
self.assign_ent = True
# GC
self.conv_first_after_pool = []
self.conv_block_after_pool = []
self.conv_last_after_pool = []
for i in range(num_pooling):
# use self to register the modules in self.modules()
self.conv_first2, self.conv_block2, self.conv_last2 = self.build_conv_layers(
self.pred_input_dim,
hidden_dim,
embedding_dim,
num_layers,
add_self,
normalize=True,
dropout=dropout,
)
self.conv_first_after_pool.append(self.conv_first2)
self.conv_block_after_pool.append(self.conv_block2)
self.conv_last_after_pool.append(self.conv_last2)
# assignment
assign_dims = []
if assign_num_layers == -1:
assign_num_layers = num_layers
if assign_input_dim == -1:
assign_input_dim = input_dim
self.assign_conv_first_modules = []
self.assign_conv_block_modules = []
self.assign_conv_last_modules = []
self.assign_pred_modules = []
assign_dim = int(max_num_nodes * assign_ratio)
for i in range(num_pooling):
assign_dims.append(assign_dim)
self.assign_conv_first, self.assign_conv_block, self.assign_conv_last = self.build_conv_layers(
assign_input_dim,
assign_hidden_dim,
assign_dim,
assign_num_layers,
add_self,
normalize=True,
)
assign_pred_input_dim = (
assign_hidden_dim * (num_layers - 1) + assign_dim
if concat
else assign_dim
)
self.assign_pred = self.build_pred_layers(
assign_pred_input_dim, [], assign_dim, num_aggs=1
)
# next pooling layer
assign_input_dim = embedding_dim
assign_dim = int(assign_dim * assign_ratio)
self.assign_conv_first_modules.append(self.assign_conv_first)
self.assign_conv_block_modules.append(self.assign_conv_block)
self.assign_conv_last_modules.append(self.assign_conv_last)
self.assign_pred_modules.append(self.assign_pred)
self.pred_model = self.build_pred_layers(
self.pred_input_dim * (num_pooling + 1),
pred_hidden_dims,
label_dim,
num_aggs=self.num_aggs,
)
for m in self.modules():
if isinstance(m, GraphConv):
m.weight.data = init.xavier_uniform(
m.weight.data, gain=nn.init.calculate_gain("relu")
)
if m.bias is not None:
m.bias.data = init.constant(m.bias.data, 0.0)
def forward(self, x, adj, batch_num_nodes, **kwargs):
if "assign_x" in kwargs:
x_a = kwargs["assign_x"]
else:
x_a = x
# mask
max_num_nodes = adj.size()[1]
if batch_num_nodes is not None:
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
embedding_mask = None
out_all = []
# self.assign_tensor = self.gcn_forward(x_a, adj,
# self.assign_conv_first_modules[0], self.assign_conv_block_modules[0], self.assign_conv_last_modules[0],
# embedding_mask)
## [batch_size x num_nodes x next_lvl_num_nodes]
# self.assign_tensor = nn.Softmax(dim=-1)(self.assign_pred(self.assign_tensor))
# if embedding_mask is not None:
# self.assign_tensor = self.assign_tensor * embedding_mask
# [batch_size x num_nodes x embedding_dim]
embedding_tensor = self.gcn_forward(
x, adj, self.conv_first, self.conv_block, self.conv_last, embedding_mask
)
out, _ = torch.max(embedding_tensor, dim=1)
out_all.append(out)
if self.num_aggs == 2:
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
for i in range(self.num_pooling):
if batch_num_nodes is not None and i == 0:
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
else:
embedding_mask = None
self.assign_tensor = self.gcn_forward(
x_a,
adj,
self.assign_conv_first_modules[i],
self.assign_conv_block_modules[i],
self.assign_conv_last_modules[i],
embedding_mask,
)
# [batch_size x num_nodes x next_lvl_num_nodes]
self.assign_tensor = nn.Softmax(dim=-1)(
self.assign_pred(self.assign_tensor)
)
if embedding_mask is not None:
self.assign_tensor = self.assign_tensor * embedding_mask
# update pooled features and adj matrix
x = torch.matmul(
torch.transpose(self.assign_tensor, 1, 2), embedding_tensor
)
adj = torch.transpose(self.assign_tensor, 1, 2) @ adj @ self.assign_tensor
x_a = x
embedding_tensor = self.gcn_forward(
x,
adj,
self.conv_first_after_pool[i],
self.conv_block_after_pool[i],
self.conv_last_after_pool[i],
)
out, _ = torch.max(embedding_tensor, dim=1)
out_all.append(out)
if self.num_aggs == 2:
# out = torch.mean(embedding_tensor, dim=1)
out = torch.sum(embedding_tensor, dim=1)
out_all.append(out)
if self.concat:
output = torch.cat(out_all, dim=1)
else:
output = out
ypred = self.pred_model(output)
return ypred
def loss(self, pred, label, adj=None, batch_num_nodes=None, adj_hop=1):
"""
Args:
batch_num_nodes: numpy array of number of nodes in each graph in the minibatch.
"""
eps = 1e-7
loss = super(SoftPoolingGcnEncoder, self).loss(pred, label)
if self.linkpred:
max_num_nodes = adj.size()[1]
pred_adj0 = self.assign_tensor @ torch.transpose(self.assign_tensor, 1, 2)
tmp = pred_adj0
pred_adj = pred_adj0
for adj_pow in range(adj_hop - 1):
tmp = tmp @ pred_adj0
pred_adj = pred_adj + tmp
pred_adj = torch.min(pred_adj, torch.Tensor(1).cuda())
# print('adj1', torch.sum(pred_adj0) / torch.numel(pred_adj0))
# print('adj2', torch.sum(pred_adj) / torch.numel(pred_adj))
# self.link_loss = F.nll_loss(torch.log(pred_adj), adj)
self.link_loss = -adj * torch.log(pred_adj + eps) - (1 - adj) * torch.log(
1 - pred_adj + eps
)
if batch_num_nodes is None:
num_entries = max_num_nodes * max_num_nodes * adj.size()[0]
print("Warning: calculating link pred loss without masking")
else:
num_entries = np.sum(batch_num_nodes * batch_num_nodes)
embedding_mask = self.construct_mask(max_num_nodes, batch_num_nodes)
adj_mask = embedding_mask @ torch.transpose(embedding_mask, 1, 2)
self.link_loss[1 - adj_mask.byte()] = 0.0
self.link_loss = torch.sum(self.link_loss) / float(num_entries)
# print('linkloss: ', self.link_loss)
return loss + self.link_loss
return loss