forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.js
91 lines (73 loc) · 2.68 KB
/
data.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as utils from './utils';
// Website Phishing data constants:
const TRAIN_DATA = 'train-data';
const TRAIN_TARGET = 'train-target';
const TEST_DATA = 'test-data';
const TEST_TARGET = 'test-target';
/** Helper class to handle loading training and test data. */
export class WebsitePhishingDataset {
constructor() {
this.dataset = null;
this.trainSize = 0;
this.testSize = 0;
this.trainBatchIndex = 0;
this.testBatchIndex = 0;
this.NUM_FEATURES = 30;
this.NUM_CLASSES = 2;
}
get numFeatures() {
return this.NUM_FEATURES;
}
/** Loads training and test data. */
async loadData() {
this.dataset = await Promise.all([
utils.loadCsv(TRAIN_DATA), utils.loadCsv(TRAIN_TARGET),
utils.loadCsv(TEST_DATA), utils.loadCsv(TEST_TARGET)
]);
let {dataset: trainDataset, vectorMeans, vectorStddevs} =
utils.normalizeDataset(this.dataset[0]);
this.dataset[0] = trainDataset;
let {dataset: testDataset} = utils.normalizeDataset(
this.dataset[2], false, vectorMeans, vectorStddevs);
this.dataset[2] = testDataset;
this.trainSize = this.dataset[0].length;
this.testSize = this.dataset[2].length;
utils.shuffle(this.dataset[0], this.dataset[1]);
utils.shuffle(this.dataset[2], this.dataset[3]);
}
getTrainData() {
const dataShape = [this.trainSize, this.NUM_FEATURES];
const trainData = Float32Array.from([].concat.apply([], this.dataset[0]));
const trainTarget = Float32Array.from([].concat.apply([], this.dataset[1]));
return {
data: tf.tensor2d(trainData, dataShape),
target: tf.tensor1d(trainTarget)
};
}
getTestData() {
const dataShape = [this.testSize, this.NUM_FEATURES];
const testData = Float32Array.from([].concat.apply([], this.dataset[2]));
const testTarget = Float32Array.from([].concat.apply([], this.dataset[3]));
return {
data: tf.tensor2d(testData, dataShape),
target: tf.tensor1d(testTarget)
};
}
}