-
Notifications
You must be signed in to change notification settings - Fork 22
/
packnet_cifar100_main_normal.py
305 lines (256 loc) · 10.9 KB
/
packnet_cifar100_main_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Main entry point for doing all stuff."""
import argparse
import json
import warnings
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.nn.parameter import Parameter
import logging
import os
import pdb
import math
from tqdm import tqdm
import sys
import numpy as np
import utils
from utils import Optimizers
from utils.packnet_manager import Manager
import utils.cifar100_dataset as dataset
import packnet_models
# To prevent PIL warnings.
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('--arch', type=str, default='vgg16_bn_cifar100',
help='Architectures')
parser.add_argument('--num_classes', type=int, default=-1,
help='Num outputs for dataset')
# Optimization options.
parser.add_argument('--lr', type=float, default=0.1,
help='Learning rate for parameters, used for baselines')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training')
parser.add_argument('--val_batch_size', type=int, default=100,
help='input batch size for validation')
parser.add_argument('--workers', type=int, default=24, help='')
parser.add_argument('--weight_decay', type=float, default=4e-5,
help='Weight decay')
# Paths.
parser.add_argument('--dataset', type=str, default='',
help='Name of dataset')
parser.add_argument('--train_path', type=str, default='',
help='Location of train data')
parser.add_argument('--val_path', type=str, default='',
help='Location of test data')
# Other.
parser.add_argument('--cuda', action='store_true', default=True,
help='use CUDA')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--checkpoint_format', type=str,
default='./{save_folder}/checkpoint-{epoch}.pth.tar',
help='checkpoint file format')
parser.add_argument('--epochs', type=int, default=160,
help='number of epochs to train')
parser.add_argument('--restore_epoch', type=int, default=0, help='')
parser.add_argument('--save_folder', type=str,
help='folder name inside one_check folder')
parser.add_argument('--load_folder', default='', help='')
parser.add_argument('--one_shot_prune_perc', type=float, default=0.5,
help='% of neurons to prune per layer')
parser.add_argument('--mode',
choices=['finetune', 'prune', 'inference'],
help='Run mode')
parser.add_argument('--logfile', type=str, help='file to save baseline accuracy')
parser.add_argument('--initial_from_task', type=str, help="")
def main():
"""Do stuff."""
args = parser.parse_args()
if args.save_folder and not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
if not torch.cuda.is_available():
logging.info('no gpu device available')
args.cuda = False
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
# If set > 0, will resume training from a given checkpoint.
resume_from_epoch = 0
resume_folder = args.load_folder
for try_epoch in range(200, 0, -1):
if os.path.exists(args.checkpoint_format.format(
save_folder=resume_folder, epoch=try_epoch)):
resume_from_epoch = try_epoch
break
if args.restore_epoch:
resume_from_epoch = args.restore_epoch
# Set default train and test path if not provided as input.
utils.set_dataset_paths(args)
if resume_from_epoch:
filepath = args.checkpoint_format.format(save_folder=resume_folder, epoch=resume_from_epoch)
checkpoint = torch.load(filepath)
checkpoint_keys = checkpoint.keys()
dataset_history = checkpoint['dataset_history']
dataset2num_classes = checkpoint['dataset2num_classes']
masks = checkpoint['masks']
if 'shared_layer_info' in checkpoint_keys:
shared_layer_info = checkpoint['shared_layer_info']
else:
shared_layer_info = {}
if 'num_for_construct' in checkpoint_keys:
num_for_construct = checkpoint['num_for_construct']
else:
dataset_history = []
dataset2num_classes = {}
masks = {}
shared_layer_info = {}
if args.arch == 'vgg16_bn_cifar100':
model = packnet_models.__dict__[args.arch](pretrained=False, dataset_history=dataset_history, dataset2num_classes=dataset2num_classes)
elif args.arch == 'resnet18':
model = packnet_models.__dict__[args.arch](dataset_history=dataset_history, dataset2num_classes=dataset2num_classes)
else:
print('Error!')
sys.exit(0)
# Add and set the model dataset
model.add_dataset(args.dataset, args.num_classes)
model.set_dataset(args.dataset)
if args.dataset not in shared_layer_info:
shared_layer_info[args.dataset] = {
'conv_bias': {},
'bn_layer_running_mean': {},
'bn_layer_running_var': {},
'bn_layer_weight': {},
'bn_layer_bias': {},
'fc_bias': {}
}
model = nn.DataParallel(model)
model = model.cuda()
if args.initial_from_task and 'None' not in args.initial_from_task:
filepath = ''
for try_epoch in range(200, 0, -1):
if os.path.exists(args.checkpoint_format.format(
save_folder=args.initial_from_task, epoch=try_epoch)):
filepath = args.checkpoint_format.format(save_folder=args.initial_from_task, epoch=try_epoch)
break
if filepath == '':
pdb.set_trace()
print('Something is wrong')
checkpoint = torch.load(filepath)
state_dict = checkpoint['model_state_dict']
curr_model_state_dict = model.module.state_dict()
for name, param in state_dict.items():
if 'num_batches_tracked' in name:
continue
try:
curr_model_state_dict[name][:].copy_(param)
except:
pdb.set_trace()
print('here')
if not masks:
for name, module in model.named_modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
if 'classifiers' in name:
continue
mask = torch.ByteTensor(module.weight.data.size()).fill_(0)
if 'cuda' in module.weight.data.type():
mask = mask.cuda()
masks[name] = mask
if args.num_classes == 5:
train_loader = dataset.cifar100_train_loader(args.dataset, args.batch_size)
val_loader = dataset.cifar100_val_loader(args.dataset, args.val_batch_size)
else:
print("num_classes should be 5")
sys.exit(1)
# if we are going to save checkpoint in other folder, then we recalculate the starting epoch
if args.save_folder != args.load_folder:
start_epoch = 0
else:
start_epoch = resume_from_epoch
manager = Manager(args, model, shared_layer_info, masks, train_loader, val_loader)
if args.mode == 'inference':
manager.load_checkpoint_for_inference(resume_from_epoch, resume_folder)
manager.validate(resume_from_epoch-1)
return
lr = args.lr
# update all layers
named_params = dict(model.named_parameters())
params_to_optimize_via_SGD = []
named_params_to_optimize_via_SGD = []
masks_to_optimize_via_SGD = []
named_masks_to_optimize_via_SGD = []
for tuple_ in named_params.items():
if 'classifiers' in tuple_[0]:
if '.{}.'.format(model.module.datasets.index(args.dataset)) in tuple_[0]:
params_to_optimize_via_SGD.append(tuple_[1])
named_params_to_optimize_via_SGD.append(tuple_)
continue
else:
params_to_optimize_via_SGD.append(tuple_[1])
named_params_to_optimize_via_SGD.append(tuple_)
# here we must set weight decay to 0.0,
# because the weight decay strategy in build-in step() function will change every weight elem in the tensor,
# which will hurt previous tasks' accuracy. (Instead, we do weight decay ourself in the `prune.py`)
optimizer_network = optim.SGD(params_to_optimize_via_SGD, lr=lr,
weight_decay=0.0, momentum=0.9, nesterov=True)
optimizers = Optimizers()
optimizers.add(optimizer_network, lr)
manager.load_checkpoint(optimizers, resume_from_epoch, resume_folder)
"""Performs training."""
curr_lrs = []
for optimizer in optimizers:
for param_group in optimizer.param_groups:
curr_lrs.append(param_group['lr'])
break
if args.mode == 'prune':
print()
print('Sparsity ratio: {}'.format(args.one_shot_prune_perc))
print('Before pruning: ')
baseline_acc = manager.validate(start_epoch-1)
print('Execute one shot pruning ...')
manager.one_shot_prune(args.one_shot_prune_perc)
elif args.mode == 'finetune':
manager.pruner.make_finetuning_mask()
for epoch_idx in range(start_epoch, args.epochs):
avg_train_acc = manager.train(optimizers, epoch_idx, curr_lrs)
avg_val_acc = manager.validate(epoch_idx)
if args.mode == 'finetune':
if epoch_idx + 1 == 50 or epoch_idx + 1 == 80:
for param_group in optimizers[0].param_groups:
param_group['lr'] *= 0.1
curr_lrs[0] = param_group['lr']
if args.mode == 'prune':
if epoch_idx + 1 == 25:
for param_group in optimizers[0].param_groups:
param_group['lr'] *= 0.1
curr_lrs[0] = param_group['lr']
if args.save_folder is not None:
# paths = os.listdir(args.save_folder)
# if paths and '.pth.tar' in paths[0]:
# for checkpoint_file in paths:
# os.remove(os.path.join(args.save_folder, checkpoint_file))
pass
else:
print('Something is wrong! Block the program with pdb')
pdb.set_trace()
if args.mode == 'finetune':
manager.save_checkpoint(optimizers, epoch_idx, args.save_folder)
if args.logfile:
json_data = {}
if os.path.isfile(args.logfile):
with open(args.logfile) as json_file:
json_data = json.load(json_file)
json_data[args.dataset] = '{:.4f}'.format(avg_val_acc)
with open(args.logfile, 'w') as json_file:
json.dump(json_data, json_file)
if avg_train_acc < 0.97:
print('Cannot prune any more!')
elif args.mode == 'prune':
#if avg_train_acc > 0.97 and (avg_val_acc - baseline_acc) >= -0.01:
if avg_train_acc > 0.97:
manager.save_checkpoint(optimizers, epoch_idx, args.save_folder)
else:
print('Pruning too much!')
print('-' * 16)
if __name__ == '__main__':
main()