-
Notifications
You must be signed in to change notification settings - Fork 56
/
benchmark.py
174 lines (147 loc) · 6.73 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import itertools
import numpy as np
import torch
from datetime import datetime
from tqdm import tqdm
from functools import partial
from multiprocessing.dummy import Pool as ThreadPool
from data import AudioDataset, MelSpectrogramFixed
from utils import show_message
def compute_rtf(sample, generation_time, sample_rate=22050):
"""
Computes RTF for a given sample.
"""
total_length = sample.shape[-1]
return float(generation_time * sample_rate / total_length)
def estimate_average_rtf_on_filelist(filelist_path, config, model, verbose=True):
"""
Runs RTF estimation of filelist of audios and computes statistics.
:param filelist_path (str): path to a filelist with needed audios
:param config (utils.ConfigWrapper): configuration dict
:param model (torch.nn.Module): WaveGrad model
:param verbose (bool, optional): verbosity level
:return stats: statistics dict
"""
device = next(model.parameters()).device
config.training_config.test_filelist_path = filelist_path
dataset = AudioDataset(config, training=False)
mel_fn = MelSpectrogramFixed(
sample_rate=config.data_config.sample_rate,
n_fft=config.data_config.n_fft,
win_length=config.data_config.win_length,
hop_length=config.data_config.hop_length,
f_min=config.data_config.f_min,
f_max=config.data_config.f_max,
n_mels=config.data_config.n_mels,
window_fn=torch.hann_window
).to(device)
rtfs = []
for i in (tqdm(range(len(dataset))) if verbose else range(len(dataset))):
datapoint = dataset[i].to(device)
mel = mel_fn(datapoint)[None]
start = datetime.now()
sample = model.forward(mel, store_intermediate_states=False)
end = datetime.now()
generation_time = (end - start).total_seconds()
rtf = compute_rtf(
sample, generation_time, sample_rate=config.data_config.sample_rate
)
rtfs.append(rtf)
average_rtf = np.mean(rtfs)
std_rtf = np.std(rtfs)
show_message(f'DEVICE: {device}. average_rtf={average_rtf}, std={std_rtf}', verbose=verbose)
rtf_stats = {
'rtfs': rtfs,
'average': average_rtf,
'std': std_rtf
}
return rtf_stats
def _betas_estimate(betas, model, mels, mel_fn):
n_iter = len(betas)
init_fn = lambda **kwargs: torch.FloatTensor(betas)
model.set_new_noise_schedule(init=init_fn, init_kwargs={'steps': n_iter})
outputs = model.forward(mels, store_intermediate_states=False)
test_pred_mels = mel_fn(outputs)
loss = torch.nn.L1Loss()(test_pred_mels, mels).item()
return loss
def generate_betas_grid(n_iter, betas_range, verbose):
betas_range = torch.FloatTensor(betas_range).log10()
exp_step = (betas_range[1] - betas_range[0]) / (n_iter - 1)
exponents = 10**torch.arange(betas_range[0], betas_range[1] + exp_step, step=exp_step)
grid = []
state = int(''.join(['1'] * n_iter)) # initial state
final_state = 9**n_iter
max_grid_size = 9**5
step = int(np.ceil(final_state / (max_grid_size)))
for _ in range(max_grid_size):
multipliers = list(map(int, str(state)))
if 0 in multipliers:
state += step
continue
betas = [mult * exp for mult, exp in zip(multipliers, exponents)]
grid.append(betas)
state += step
return grid
def iters_schedule_grid_search(model, config,
n_iter=6,
betas_range=(1e-6, 1e-2),
test_batch_size=2,
step=1,
path_to_store_schedule=None,
save_stats_for_grid=True,
verbose=True,
n_jobs=1):
"""
Performs grid search for 6 iterations schedule. Run it only on GPU and only for a small number of iterations!
:param model (torch.nn.Module): WaveGrad model
:param config (ConfigWrapper): model configuration
:param n_iter (int, optional): number of iterations to search for
:param test_batch_size (int, optional): number of one second samples to be tested grid sets on
:param path_to_store_schedule (str, optional): path to store stats. If not specified, then it will no be saved and would be just returned.
:param save_stats_for_grid (str, optional): flag to save stats for whole grid or not
:param verbose (bool, optional): output all the process
:param n_jobs(int, optional): number of parallel threads to use
:return betas (list): list of betas, which gives the lowest log10-mel-spectrogram absolute error
:return stats (dict): dict of type {betas: loss} for the whole grid
"""
device = next(model.parameters()).device
if 'cpu' in str(device):
show_message('WARNING: running grid search on CPU will be slow.')
show_message('Initializing betas grid...', verbose=verbose)
grid = generate_betas_grid(n_iter, betas_range, verbose=verbose)[::step]
show_message('Initializing utils...', verbose=verbose)
mel_fn = MelSpectrogramFixed(
sample_rate=config.data_config.sample_rate,
n_fft=config.data_config.n_fft,
win_length=config.data_config.win_length,
hop_length=config.data_config.hop_length,
f_min=config.data_config.f_min,
f_max=config.data_config.f_max,
n_mels=config.data_config.n_mels,
window_fn=torch.hann_window
).to(device)
dataset = AudioDataset(config, training=True)
idx = np.random.choice(range(len(dataset)), size=test_batch_size, replace=False)
test_batch = torch.stack([dataset[i] for i in idx]).to(device)
test_mels = mel_fn(test_batch)
show_message('Starting search...', verbose=verbose)
with ThreadPool(processes=n_jobs) as pool:
process_fn = partial(_betas_estimate, model=model, mels=test_mels, mel_fn=mel_fn)
stats = list(tqdm(pool.imap(process_fn, grid), total=len(grid)))
stats = {i : (grid[i], stats[i]) for i in range(len(stats))}
if save_stats_for_grid:
tmp_stats_path = f'{os.path.dirname(path_to_store_schedule)}/{n_iter}stats.pt'
show_message(f'Saving tmp stats for whole grid to `{tmp_stats_path}`...', verbose=verbose)
torch.save(stats, tmp_stats_path)
best_idx = np.argmin(list([value for _, value in stats.values()]))
best_betas = grid[best_idx]
if not isinstance(path_to_store_schedule, type(None)):
show_message(f'Saving best schedule to `{path_to_store_schedule}`...', verbose=verbose)
torch.save(best_betas, path_to_store_schedule)
return best_betas, stats
def fibonacci(b1=1e-6, b2=9e-6, n_iter=25):
betas = [b1, b2]
for _ in range(n_iter - 2):
betas.append(sum(betas[-2:]))
return betas[:n_iter]