-
Notifications
You must be signed in to change notification settings - Fork 0
/
cdlzscale.c
687 lines (582 loc) · 20.1 KB
/
cdlzscale.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#include <stdio.h>
#include <math.h>
#define CDL_LIBRARY_SOURCE
#include "cdl.h"
/*
* ZSCALE -- Compute the optimal Z1, Z2 (range of greyscale values to be
* displayed) of an image. For efficiency a statistical subsample of an image
* is used. The pixel sample evenly subsamples the image in x and y. The
* entire image is used if the number of pixels in the image is smaller than
* the desired sample.
*
* The sample is accumulated in a buffer and sorted by greyscale value.
* The median value is the central value of the sorted array. The slope of a
* straight line fitted to the sorted sample is a measure of the standard
* deviation of the sample about the median value. Our algorithm is to sort
* the sample and perform an iterative fit of a straight line to the sample,
* using pixel rejection to omit gross deviants near the endpoints. The fitted
* straight line is the transfer function used to map image Z into display Z.
* If more than half the pixels are rejected the full range is used. The slope
* of the fitted line is divided by the user-supplied contrast factor and the
* final Z1 and Z2 are computed, taking the origin of the fitted line at the
* median value.
*/
#define MIN_NPIXELS 5 /* smallest permissible sample */
#define MAX_REJECT 0.5 /* max frac. of pixels to be rejected */
#define GOOD_PIXEL 0 /* use pixel in fit */
#define BAD_PIXEL 1 /* ignore pixel in all computations */
#define REJECT_PIXEL 2 /* reject pixel after a bit */
#define KREJ 2.5 /* k-sigma pixel rejection factor */
#define MAX_ITERATIONS 5 /* maximum number of fitline iterations */
#undef max
#define max(a,b) ((a) > (b) ? (a) : (b))
#undef min
#define min(a,b) ((a) < (b) ? (a) : (b))
#undef mod
#define mod(a,b) ((a) % (b))
#undef nint
#define nint(a) ((int)(a + 0.5))
#undef abs
#define abs(a) ((a) >= 0 ? (a) : -(a))
extern int cdl_debug;
#ifdef ANSI_FUNC
void cdl_zscale(unsigned char *im, int nx, int ny, int bitpix, float *z1, float *z2, float contrast, int opt_size, int len_stdline);
int sampleImage(unsigned char *im, int bitpix, float **sample, int nx, int ny, int optimal_size, int len_stdline);
static void subSample(float *a, float *b, int npix, int step);
int fitLine(float *data, int npix, float *zstart, float *zslope, float krej, int ngrow, int maxiter);
static void flattenData(float *data, float *flat, float *x, int npix, double
z0, double dz);
int computeSigma(float *a, char *badpix, int npix, double *mean, double *sigma);
int rejectPixels(float *data, float *flat, float *normx, char *badpix, int npix, double *sumxsqr, double *sumxz, double *sumx, double *sumz, double threshold, int ngrow);
int floatCompare(float *i, float *j);
#else
int rejectPixels(), computeSigma();
int sampleImage(), fitLine(), floatCompare();
static void flattenData();
static void subSample();
#endif
/* Compatibility hacks. */
#ifdef AUX
#ifdef ANSI_FUNC
void * memmove (void *a, const void *b, size_t n)
#else
void *memmove(a,b,n) void *a; const void *b; size_t n;
#endif
{ bcopy(b,a,n); }
#else
#if defined(sun) && !defined(SYSV)
#ifdef ANSI_FUNC
void * memmove (void *a, void *b, int n)
#else
void *memmove(a,b,n) void *a, *b; int n;
#endif
{ bcopy(b,a,n); }
#endif
#endif
/* CDL_ZSCALE -- Sample the image and compute optimal Z1 and Z2 values.
*/
#ifdef ANSI_FUNC
void
cdl_zscale (
unsigned char *im, /* image data to be sampled */
int nx,
int ny, /* image dimensions */
int bitpix, /* bits per pixel */
float *z1,
float *z2, /* output min and max greyscale values */
float contrast, /* adj. to slope of transfer function */
int opt_size, /* desired number of pixels in sample */
int len_stdline /* optimal number of pixels per line */
)
#else
void
cdl_zscale (im, nx, ny, bitpix, z1, z2, contrast, opt_size, len_stdline)
unsigned char *im; /* image data to be sampled */
int nx, ny; /* image dimensions */
int bitpix; /* bits per pixel */
float *z1, *z2; /* output min and max greyscale values */
float contrast; /* adj. to slope of transfer function */
int opt_size; /* desired number of pixels in sample */
int len_stdline; /* optimal number of pixels per line */
#endif
{
register int npix, minpix, ngoodpix, center_pixel, ngrow;
float zmin, zmax, median;
float zstart, zslope;
float *sample = NULL, *left = NULL;
if (cdl_debug)
printf ("[cdl_zscale] %dx%d-%d cont=%g optsz=%d len=%d\n",
nx, ny, bitpix, contrast, opt_size, len_stdline);
/* Subsample the image. */
npix = sampleImage((unsigned char *)im, bitpix, &sample, nx, ny,
opt_size, len_stdline);
/* Sort the sample, compute the minimum, maximum, and median pixel
* values.
*/
qsort (sample, npix, sizeof (float), floatCompare);
zmin = *sample;
zmax = *(sample+npix-1);
/* The median value is the average of the two central values if there
* are an even number of pixels in the sample.
*/
center_pixel = max (1, (npix + 1) / 2);
left = &(sample[center_pixel - 1]);
if (mod (npix, 2) == 1 || center_pixel >= npix)
median = *left;
else
median = (*left + *(left+1)) / 2;
/* Fit a line to the sorted sample vector. If more than half of the
* pixels in the sample are rejected give up and return the full range.
* If the user-supplied contrast factor is not 1.0 adjust the scale
* accordingly and compute Z1 and Z2, the y intercepts at indices 1 and
* npix.
*/
minpix = max (MIN_NPIXELS, (int) (npix * MAX_REJECT));
ngrow = max (1, nint (npix * .01));
ngoodpix = fitLine (sample, npix, &zstart, &zslope,
KREJ, ngrow, MAX_ITERATIONS);
if (ngoodpix < minpix) {
*z1 = zmin;
*z2 = zmax;
} else {
if (contrast > 0)
zslope = zslope / contrast;
*z1 = max (zmin, median - (center_pixel - 1) * zslope);
*z2 = min (zmax, median + (npix - center_pixel) * zslope);
}
if (cdl_debug) {
printf("[cdl_zscale] zmin=%g zmax=%g left=%g median=%g\n",
zmin, zmax, *left, median);
printf("[cdl_zscale] minpix=%d ngrow=%d ngoodpix=%d\n",
minpix, ngrow, ngoodpix);
printf("[cdl_zscale] zslope=%g center_pix=%d z1=%g z2=%g\n",
zslope, center_pixel, *z1, *z2);
}
/* Clean up. */
free ((float *)sample);
}
/* sampleImage -- Extract an evenly gridded subsample of the pixels from
* a two-dimensional image into a one-dimensional vector.
*/
#ifdef ANSI_FUNC
int
sampleImage (
unsigned char *im, /* image to be sampled */
int bitpix, /* bits per pixel in image */
float **sample, /* output vector containing the sample */
int nx,
int ny, /* image dimensions */
int optimal_size, /* desired number of pixels in sample */
int len_stdline /* optimal number of pixels per line */
)
#else
int
sampleImage (im, bitpix, sample, nx, ny, optimal_size, len_stdline)
unsigned char *im; /* image to be sampled */
int bitpix; /* bits per pixel in image */
float **sample; /* output vector containing the sample */
int nx, ny; /* image dimensions */
int optimal_size; /* desired number of pixels in sample */
int len_stdline; /* optimal number of pixels per line */
#endif
{
register int i;
int ncols, nlines, col_step, line_step, maxpix, line;
int opt_npix_per_line, npix_per_line, npix = 0;
int opt_nlines_in_sample, min_nlines_in_sample, max_nlines_in_sample;
float *op = NULL, *row = NULL;
int *ipix = NULL;
float *fpix = NULL;
double *dpix = NULL;
short *spix = NULL;
char *bpix = NULL;
ncols = nx;
nlines = ny;
/* Compute the number of pixels each line will contribute to the sample,
* and the subsampling step size for a line. The sampling grid must
* span the whole line on a uniform grid.
*/
opt_npix_per_line = max (1, min (ncols, len_stdline));
col_step = max (2, (ncols + opt_npix_per_line-1) / opt_npix_per_line);
npix_per_line = max (1, (ncols + col_step-1) / col_step);
if (cdl_debug)
printf ("[sampleImage] opt_npix/line=%d col_step=%d n/line=%d\n",
opt_npix_per_line, col_step, npix_per_line);
/* Compute the number of lines to sample and the spacing between lines.
* We must ensure that the image is adequately sampled despite its
* size, hence there is a lower limit on the number of lines in the
* sample. We also want to minimize the number of lines accessed when
* accessing a large image, because each disk seek and read is ex-
* pensive. The number of lines extracted will be roughly the sample
* size divided by len_stdline, possibly more if the lines are very
* short.
*/
min_nlines_in_sample = max (1, optimal_size / len_stdline);
opt_nlines_in_sample = max(min_nlines_in_sample, min(nlines,
(optimal_size + npix_per_line-1) / npix_per_line));
line_step = max (2, nlines / (opt_nlines_in_sample));
max_nlines_in_sample = (nlines + line_step-1) / line_step;
if (cdl_debug)
printf ("[sampleImage] nl_in_samp=%d/%d opt_nl/samp=%d lstep=%d\n",
min_nlines_in_sample, opt_nlines_in_sample, line_step,
max_nlines_in_sample);
/* Allocate space for the output vector. Buffer must be freed by our
* caller.
*/
maxpix = npix_per_line * max_nlines_in_sample;
*sample = (float *) malloc (maxpix * sizeof (float));
row = (float *) malloc (nx * sizeof (float));
/* Extract the vector. */
op = *sample;
for (line = (line_step + 1)/2; line < nlines; line+=line_step) {
/* Load a row of float values from the image */
switch (bitpix) {
case 8:
bpix = (char *) &im[(line-1) * nx * sizeof(char)];
for (i=0; i < nx; i++)
row[i] = (float) bpix[i];
break;
case 16:
spix = (short *) &im[(line-1) * nx * sizeof(short)];
for (i=0; i < nx; i++)
row[i] = (float) spix[i];
break;
case 32:
ipix = (int *) &im[(line-1) * nx * sizeof(int)];
for (i=0; i < nx; i++)
row[i] = (float) ipix[i];
break;
case -32:
fpix = (float *) &im[(line-1) * nx * sizeof(float)];
for (i=0; i < nx; i++)
row[i] = (float) fpix[i];
break;
case -64:
dpix = (double *) &im[(line-1) * nx * sizeof(double)];
for (i=0; i < nx; i++)
row[i] = (float) dpix[i];
break;
}
subSample (row, op, npix_per_line, col_step);
op += npix_per_line;
npix += npix_per_line;
if (npix > maxpix)
break;
}
free ((float *)row);
return (npix);
}
/* subSample -- Subsample an image line. Extract the first pixel and
* every "step"th pixel thereafter for a total of npix pixels.
*/
#ifdef ANSI_FUNC
static void
subSample (float *a, float *b, int npix, int step)
#else
static void
subSample (a, b, npix, step)
float *a;
float *b;
int npix, step;
#endif
{
register int ip, i;
if (step <= 1)
memmove (b, a, npix);
else {
ip = 0;
for (i=0; i < npix; i++) {
b[i] = a[ip];
ip += step;
}
}
}
/* fitLine -- Fit a straight line to a data array of type real. This is
* an iterative fitting algorithm, wherein points further than ksigma from the
* current fit are excluded from the next fit. Convergence occurs when the
* next iteration does not decrease the number of pixels in the fit, or when
* there are no pixels left. The number of pixels left after pixel rejection
* is returned as the function value.
*/
#ifdef ANSI_FUNC
int
fitLine (
float *data, /* data to be fitted */
int npix, /* number of pixels before rejection */
float *zstart, /* Z-value of pixel data[1] (output) */
float *zslope, /* dz/pixel (output) */
float krej, /* k-sigma pixel rejection factor */
int ngrow, /* number of pixels of growing */
int maxiter /* max iterations */
)
#else
int
fitLine (data, npix, zstart, zslope, krej, ngrow, maxiter)
float *data; /* data to be fitted */
int npix; /* number of pixels before rejection */
float *zstart; /* Z-value of pixel data[1] (output) */
float *zslope; /* dz/pixel (output) */
float krej; /* k-sigma pixel rejection factor */
int ngrow; /* number of pixels of growing */
int maxiter; /* max iterations */
#endif
{
int i, ngoodpix, last_ngoodpix, minpix, niter;
double xscale, z0, dz, o_dz, x, z, mean, sigma, threshold;
double sumxsqr, sumxz, sumz, sumx, rowrat;
float *flat, *normx;
char *badpix;
if (npix <= 0)
return (0);
else if (npix == 1) {
*zstart = data[1];
*zslope = 0.0;
return (1);
} else
xscale = 2.0 / (npix - 1);
/* Allocate a buffer for data minus fitted curve, another for the
* normalized X values, and another to flag rejected pixels.
*/
flat = (float *) malloc (npix * sizeof (float));
normx = (float *) malloc (npix * sizeof (float));
badpix = (char *) calloc (npix, sizeof(char));
/* Compute normalized X vector. The data X values [1:npix] are
* normalized to the range [-1:1]. This diagonalizes the lsq matrix
* and reduces its condition number.
*/
for (i=0; i<npix; i++)
normx[i] = i * xscale - 1.0;
/* Fit a line with no pixel rejection. Accumulate the elements of the
* matrix and data vector. The matrix M is diagonal with
* M[1,1] = sum x**2 and M[2,2] = ngoodpix. The data vector is
* DV[1] = sum (data[i] * x[i]) and DV[2] = sum (data[i]).
*/
sumxsqr = 0;
sumxz = 0;
sumx = 0;
sumz = 0;
for (i=0; i<npix; i++) {
x = normx[i];
z = data[i];
sumxsqr = sumxsqr + (x * x);
sumxz = sumxz + z * x;
sumz = sumz + z;
}
/* Solve for the coefficients of the fitted line. */
z0 = sumz / npix;
dz = o_dz = sumxz / sumxsqr;
/* Iterate, fitting a new line in each iteration. Compute the flattened
* data vector and the sigma of the flat vector. Compute the lower and
* upper k-sigma pixel rejection thresholds. Run down the flat array
* and detect pixels to be rejected from the fit. Reject pixels from
* the fit by subtracting their contributions from the matrix sums and
* marking the pixel as rejected.
*/
ngoodpix = npix;
minpix = max (MIN_NPIXELS, (int) (npix * MAX_REJECT));
for (niter=0; niter < maxiter; niter++) {
last_ngoodpix = ngoodpix;
/* Subtract the fitted line from the data array. */
flattenData (data, flat, normx, npix, z0, dz);
/* Compute the k-sigma rejection threshold. In principle this
* could be more efficiently computed using the matrix sums
* accumulated when the line was fitted, but there are problems with
* numerical stability with that approach.
*/
ngoodpix = computeSigma (flat, badpix, npix, &mean, &sigma);
threshold = sigma * krej;
/* Detect and reject pixels further than ksigma from the fitted
* line.
*/
ngoodpix = rejectPixels (data, flat, normx,
badpix, npix, &sumxsqr, &sumxz, &sumx, &sumz, threshold,
ngrow);
/* Solve for the coefficients of the fitted line. Note that after
* pixel rejection the sum of the X values need no longer be zero.
*/
if (ngoodpix > 0) {
rowrat = sumx / sumxsqr;
z0 = (sumz - rowrat * sumxz) / (ngoodpix - rowrat * sumx);
dz = (sumxz - z0 * sumx) / sumxsqr;
}
if (ngoodpix >= last_ngoodpix || ngoodpix < minpix)
break;
}
/* Transform the line coefficients back to the X range [1:npix]. */
*zstart = z0 - dz;
*zslope = dz * xscale;
if (abs(*zslope) < 0.001)
*zslope = o_dz * xscale;
free ((float *)flat);
free ((float *)normx);
free ((char *)badpix);
return (ngoodpix);
}
/* flattenData -- Compute and subtract the fitted line from the data array,
* returned the flattened data in FLAT.
*/
#ifdef ANSI_FUNC
static void
flattenData (
float *data, /* raw data array */
float *flat, /* flattened data (output) */
float *x, /* x value of each pixel */
int npix, /* number of pixels */
double z0,
double dz /* z-intercept, dz/dx of fitted line */
)
#else
static void
flattenData (data, flat, x, npix, z0, dz)
float *data; /* raw data array */
float *flat; /* flattened data (output) */
float *x; /* x value of each pixel */
int npix; /* number of pixels */
double z0, dz; /* z-intercept, dz/dx of fitted line */
#endif
{
register int i;
for (i=0; i < npix; i++)
flat[i] = data[i] - (x[i] * dz + z0);
}
/* computeSigma -- Compute the root mean square deviation from the
* mean of a flattened array. Ignore rejected pixels.
*/
#ifdef ANSI_FUNC
int
computeSigma (
float *a, /* flattened data array */
char *badpix, /* bad pixel flags (!= 0 if bad pixel) */
int npix,
double *mean,
double *sigma /* (output) */
)
#else
int
computeSigma (a, badpix, npix, mean, sigma)
float *a; /* flattened data array */
char *badpix; /* bad pixel flags (!= 0 if bad pixel) */
int npix;
double *mean, *sigma; /* (output) */
#endif
{
float pixval;
int i, ngoodpix = 0;
double sum = 0.0, sumsq = 0.0, temp;
/* Accumulate sum and sum of squares. */
for (i=0; i < npix; i++)
if (badpix[i] == GOOD_PIXEL) {
pixval = a[i];
ngoodpix = ngoodpix + 1;
sum = sum + pixval;
sumsq = sumsq + pixval * pixval;
}
/* Compute mean and sigma. */
switch (ngoodpix) {
case 0:
*mean = INDEF;
*sigma = INDEF;
break;
case 1:
*mean = sum;
*sigma = INDEF;
break;
default:
*mean = sum / (double) ngoodpix;
temp = sumsq / (double) (ngoodpix-1) -
(sum*sum) / (double) (ngoodpix*(ngoodpix - 1));
if (temp < 0) /* possible with roundoff error */
*sigma = 0.0;
else
*sigma = sqrt (temp);
}
return (ngoodpix);
}
/* rejectPixels -- Detect and reject pixels more than "threshold" greyscale
* units from the fitted line. The residuals about the fitted line are given
* by the "flat" array, while the raw data is in "data". Each time a pixel
* is rejected subtract its contributions from the matrix sums and flag the
* pixel as rejected. When a pixel is rejected reject its neighbors out to
* a specified radius as well. This speeds up convergence considerably and
* produces a more stringent rejection criteria which takes advantage of the
* fact that bad pixels tend to be clumped. The number of pixels left in the
* fit is returned as the function value.
*/
#ifdef ANSI_FUNC
int
rejectPixels (
float *data, /* raw data array */
float *flat, /* flattened data array */
float *normx, /* normalized x values of pixels */
char *badpix, /* bad pixel flags (!= 0 if bad pixel) */
int npix,
double *sumxsqr,
double *sumxz,
double *sumx,
double *sumz,/* matrix sums */
double threshold, /* threshold for pixel rejection */
int ngrow /* number of pixels of growing */
)
#else
int
rejectPixels (data, flat, normx, badpix, npix,
sumxsqr, sumxz, sumx, sumz, threshold, ngrow)
float *data; /* raw data array */
float *flat; /* flattened data array */
float *normx; /* normalized x values of pixels */
char *badpix; /* bad pixel flags (!= 0 if bad) */
int npix;
double *sumxsqr,*sumxz,*sumx,*sumz; /* matrix sums */
double threshold; /* threshold for pixel rejection */
int ngrow; /* number of pixels of growing */
#endif
{
int ngoodpix, i, j;
float residual, lcut, hcut;
double x, z;
ngoodpix = npix;
lcut = -threshold;
hcut = threshold;
for (i=0; i < npix; i++) {
if (badpix[i] == BAD_PIXEL)
ngoodpix = ngoodpix - 1;
else {
residual = flat[i];
if (residual < lcut || residual > hcut) {
/* Reject the pixel and its neighbors out to the growing
* radius. We must be careful how we do this to avoid
* directional effects. Do not turn off thresholding on
* pixels in the forward direction; mark them for rejection
* but do not reject until they have been thresholded.
* If this is not done growing will not be symmetric.
*/
for (j=max(0,i-ngrow); j < min(npix,i+ngrow); j++) {
if (badpix[j] != BAD_PIXEL) {
if (j <= i) {
x = (double) normx[j];
z = (double) data[j];
*sumxsqr = *sumxsqr - (x * x);
*sumxz = *sumxz - z * x;
*sumx = *sumx - x;
*sumz = *sumz - z;
badpix[j] = BAD_PIXEL;
ngoodpix = ngoodpix - 1;
} else
badpix[j] = REJECT_PIXEL;
}
}
}
}
}
return (ngoodpix);
}
#ifdef ANSI_FUNC
int
floatCompare (float *i, float *j)
#else
int floatCompare (i,j)
float *i, *j;
#endif
{
return ((*i <= *j) ? -1 : 1);
}