forked from Shikhargupta/Spiking-Neural-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reconstruct.py
executable file
·44 lines (32 loc) · 1.49 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
###################################################### README #####################################################
# This file is used to leverage the generative property of a Spiking Neural Network. reconst_weights function is used
# for that purpose. Looking at the reconstructed images helps to analyse training process.
####################################################################################################################
import numpy as np
from numpy import interp
import cv2
from recep_field import rf
from parameters import param as par
def reconst_weights(weights, num):
weights = np.array(weights)
weights = np.reshape(weights, (par.pixel_x, par.pixel_x))
img = np.zeros((par.pixel_x, par.pixel_x))
for i in range(par.pixel_x):
for j in range(par.pixel_x):
img[i][j] = int(interp(weights[i][j], [par.w_min, par.w_max], [0, 255]))
cv2.imwrite('neuron' + str(num) + '.png', img)
print "Returning image reconstructed from weight"
return img
def reconst_rf(weights, num):
weights = np.array(weights)
weights = np.reshape(weights, (par.pixel_x, par.pixel_x))
img = np.zeros((par.pixel_x, par.pixel_x))
for i in range(par.pixel_x):
for j in range(par.pixel_x):
img[i][j] = int(interp(weights[i][j], [-2, 3.625], [0, 255]))
cv2.imwrite('neuron' + str(num) + '.png', img)
return img
if __name__ == '__main__':
img = cv2.imread("images2/" + "69" + ".png", 0)
pot = rf(img)
reconst_rf(pot, 12)