Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CALPAGAN arXiv:2401.02248 #233

Merged
merged 4 commits into from
Nov 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions HEPML.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1312,6 +1312,21 @@ @article{Fanelli:2024wrj
year = "2024"
}

% July 10, 2024
@article{Simsek:2024zhj,
author = "Simsek, Ebru and Isildak, Bora and Dogru, Anil and Aydogan, Reyhan and Bayrak, Aydogan Burak and Ertekin, Seyda",
title = "{CALPAGAN: Calorimetry for Particles Using Generative Adversarial Networks}",
eprint = "2401.02248",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
doi = "10.1093/ptep/ptae106",
journal = "PTEP",
volume = "2024",
number = "8",
month = "7",
year = "2024"
}

% July 10, 2024
@article{Tani:2024qzm,
author = "Tani, Laurits and Seeba, Nalong-Norman and Vanaveski, Hardi and Pata, Joosep and Lange, Torben",
Expand Down
2 changes: 1 addition & 1 deletion HEPML.tex
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@
\item \textbf{Generative models / density estimation}
\\\textit{The goal of generative modeling is to learn (explicitly or implicitly) a probability density $p(x)$ for the features $x\in\mathbb{R}^n$. This task is usually unsupervised (no labels).}
\begin{itemize}
\item \textbf{GANs}~\cite{Krause:2024avx,Kach:2024yxi,Wojnar:2024cbn,Dooney:2024pvt,Chan:2023icm,Scham:2023usu,Scham:2023cwn,FaucciGiannelli:2023fow,Erdmann:2023ngr,Barbetti:2023bvi,Alghamdi:2023emm,Dubinski:2023fsy,Chan:2023ume,Diefenbacher:2023prl,EXO:2023pkl,Hashemi:2023ruu,Yue:2023uva,Buhmann:2023pmh,Anderlini:2022hgm,ATLAS:2022jhk,Rogachev:2022hjg,Ratnikov:2022hge,Anderlini:2022ckd,Ghosh:2022zdz,Bieringer:2022cbs,Buhmann:2021caf,Desai:2021wbb,Chisholm:2021pdn,Anderlini:2021qpm,Bravo-Prieto:2021ehz,Li:2021cbp,Mu:2021nno,Khattak:2021ndw,NEURIPS2020_a878dbeb,Kansal:2021cqp,Winterhalder:2021ave,Lebese:2021foi,Rehm:2021qwm,Carrazza:2021hny,Rehm:2021zoz,Rehm:2021zow,Choi:2021sku,Lai:2020byl,Maevskiy:2020ank,Kansal:2020svm,2008.06545,Diefenbacher:2020rna,Alanazi:2020jod,buhmann2020getting,Wang:2020tap,Belayneh:2019vyx,Hooberman:DLPS2017,Farrell:2019fsm,deOliveira:2017rwa,Oliveira:DLPS2017,Urban:2018tqv,Erdmann:2018jxd,Erbin:2018csv,Derkach:2019qfk,Deja:2019vcv,Erdmann:2018kuh,Musella:2018rdi,Datta:2018mwd,Vallecorsa:2018zco,Carminati:2018khv,Zhou:2018ill,ATL-SOFT-PUB-2018-001,Chekalina:2018hxi,Hashemi:2019fkn,DiSipio:2019imz,Lin:2019htn,Butter:2019cae,Carrazza:2019cnt,SHiP:2019gcl,Vallecorsa:2019ked,Bellagente:2019uyp,Martinez:2019jlu,Butter:2019eyo,Alonso-Monsalve:2018aqs,Paganini:2017dwg,Paganini:2017hrr,deOliveira:2017pjk}
\item \textbf{GANs}~\cite{Krause:2024avx,Kach:2024yxi,Wojnar:2024cbn,Dooney:2024pvt,Simsek:2024zhj,Chan:2023icm,Scham:2023usu,Scham:2023cwn,FaucciGiannelli:2023fow,Erdmann:2023ngr,Barbetti:2023bvi,Alghamdi:2023emm,Dubinski:2023fsy,Chan:2023ume,Diefenbacher:2023prl,EXO:2023pkl,Hashemi:2023ruu,Yue:2023uva,Buhmann:2023pmh,Anderlini:2022hgm,ATLAS:2022jhk,Rogachev:2022hjg,Ratnikov:2022hge,Anderlini:2022ckd,Ghosh:2022zdz,Bieringer:2022cbs,Buhmann:2021caf,Desai:2021wbb,Chisholm:2021pdn,Anderlini:2021qpm,Bravo-Prieto:2021ehz,Li:2021cbp,Mu:2021nno,Khattak:2021ndw,NEURIPS2020_a878dbeb,Kansal:2021cqp,Winterhalder:2021ave,Lebese:2021foi,Rehm:2021qwm,Carrazza:2021hny,Rehm:2021zoz,Rehm:2021zow,Choi:2021sku,Lai:2020byl,Maevskiy:2020ank,Kansal:2020svm,2008.06545,Diefenbacher:2020rna,Alanazi:2020jod,buhmann2020getting,Wang:2020tap,Belayneh:2019vyx,Hooberman:DLPS2017,Farrell:2019fsm,deOliveira:2017rwa,Oliveira:DLPS2017,Urban:2018tqv,Erdmann:2018jxd,Erbin:2018csv,Derkach:2019qfk,Deja:2019vcv,Erdmann:2018kuh,Musella:2018rdi,Datta:2018mwd,Vallecorsa:2018zco,Carminati:2018khv,Zhou:2018ill,ATL-SOFT-PUB-2018-001,Chekalina:2018hxi,Hashemi:2019fkn,DiSipio:2019imz,Lin:2019htn,Butter:2019cae,Carrazza:2019cnt,SHiP:2019gcl,Vallecorsa:2019ked,Bellagente:2019uyp,Martinez:2019jlu,Butter:2019eyo,Alonso-Monsalve:2018aqs,Paganini:2017dwg,Paganini:2017hrr,deOliveira:2017pjk}
\\\textit{Generative Adversarial Networks~\cite{Goodfellow:2014upx} learn $p(x)$ implicitly through the minimax optimization of two networks: one that maps noise to structure $G(z)$ and one a classifier (called the discriminator) that learns to distinguish examples generated from $G(z)$ and those generated from the target process. When the discriminator is maximally `confused', then the generator is effectively mimicking $p(x)$.}
\item \textbf{(Variational) Autoencoders}~\cite{Smith:2024lxz,Krause:2024avx,Liu:2024kvv,Kuh:2024lgx,Hoque:2023zjt,Zhang:2023khv,Chekanov:2023uot,Lasseri:2023dhi,Anzalone:2023ugq,Roche:2023int,Cresswell:2022tof,AbhishekAbhishek:2022wby,Collins:2022qpr,Ilten:2022jfm,Touranakou:2022qrp,Buhmann:2021caf,Tsan:2021brw,Jawahar:2021vyu,Orzari:2021suh,Collins:2021pld,Fanelli:2019qaq,Hariri:2021clz,deja2020endtoend,Bortolato:2021zic,Buhmann:2021lxj,Howard:2021pos,1816035,Cheng:2020dal,ATL-SOFT-PUB-2018-001,Monk:2018zsb}
\\\textit{An autoencoder consists of two functions: one that maps $x$ into a latent space $z$ (encoder) and a second one that maps the latent space back into the original space (decoder). The encoder and decoder are simultaneously trained so that their composition is nearly the identity. When the latent space has a well-defined probability density (as in variational autoencoders), then one can sample from the autoencoder by applying the detector to a randomly chosen element of the latent space.}
Expand Down
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -1387,6 +1387,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A
* [Pay Attention To Mean Fields For Point Cloud Generation](https://arxiv.org/abs/2408.04997) (2024)
* [Applying generative neural networks for fast simulations of the ALICE (CERN) experiment](https://arxiv.org/abs/2407.16704) (2024)
* [cDVGAN: One Flexible Model for Multi-class Gravitational Wave Signal and Glitch Generation](https://arxiv.org/abs/2401.16356) [[DOI](https://doi.org/10.1103/PhysRevD.110.022004)] (2024)
* [CALPAGAN: Calorimetry for Particles Using Generative Adversarial Networks](https://arxiv.org/abs/2401.02248) [[DOI](https://doi.org/10.1093/ptep/ptae106)] (2024)
* [Integrating Particle Flavor into Deep Learning Models for Hadronization](https://arxiv.org/abs/2312.08453) (2023)
* [DeepTreeGANv2: Iterative Pooling of Point Clouds](https://arxiv.org/abs/2312.00042) (2023)
* [DeepTreeGAN: Fast Generation of High Dimensional Point Clouds](https://arxiv.org/abs/2311.12616) [[DOI](https://doi.org/10.1051/epjconf/202429509010)] (2023)
Expand Down
1 change: 1 addition & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -1518,6 +1518,7 @@ const expandElements = shouldExpand => {
* [Pay Attention To Mean Fields For Point Cloud Generation](https://arxiv.org/abs/2408.04997) (2024)
* [Applying generative neural networks for fast simulations of the ALICE (CERN) experiment](https://arxiv.org/abs/2407.16704) (2024)
* [cDVGAN: One Flexible Model for Multi-class Gravitational Wave Signal and Glitch Generation](https://arxiv.org/abs/2401.16356) [[DOI](https://doi.org/10.1103/PhysRevD.110.022004)] (2024)
* [CALPAGAN: Calorimetry for Particles Using Generative Adversarial Networks](https://arxiv.org/abs/2401.02248) [[DOI](https://doi.org/10.1093/ptep/ptae106)] (2024)
* [Integrating Particle Flavor into Deep Learning Models for Hadronization](https://arxiv.org/abs/2312.08453) (2023)
* [DeepTreeGANv2: Iterative Pooling of Point Clouds](https://arxiv.org/abs/2312.00042) (2023)
* [DeepTreeGAN: Fast Generation of High Dimensional Point Clouds](https://arxiv.org/abs/2311.12616) [[DOI](https://doi.org/10.1051/epjconf/202429509010)] (2023)
Expand Down