Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ver 1kb #201

Merged
merged 29 commits into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
06038bc
(Ref. #12)
Lee01Atom Oct 25, 2024
bda1e65
delete trailing whitespaces
Lee01Atom Oct 25, 2024
7365d5e
delete trailing whitespaces
Lee01Atom Oct 25, 2024
ce50a86
add preliminary changes
Lee01Atom Oct 27, 2024
381e41d
Apply suggestions from code review
Lee01Atom Oct 30, 2024
72bfe63
add mass conservation and sorption law verification
Lee01Atom Oct 30, 2024
913e354
Apply suggestions from code review
Lee01Atom Oct 31, 2024
bd6bdc6
update of the documentation
Lee01Atom Nov 1, 2024
99cc76a
add figure
Lee01Atom Nov 5, 2024
7a53ed2
Apply suggestions from code review
Lee01Atom Nov 5, 2024
0298356
add csv file
Lee01Atom Nov 5, 2024
69b31b2
Apply suggestions from code review
Lee01Atom Nov 5, 2024
111e911
add exodus test
Lee01Atom Nov 5, 2024
4ed0eb3
Update test/tests/ver-1kb/tests
Lee01Atom Nov 5, 2024
aa08eba
add concentrations ratio
Lee01Atom Nov 11, 2024
af4b484
add exodus csv
Lee01Atom Nov 11, 2024
50cced2
Apply suggestions from code review
Lee01Atom Nov 12, 2024
ae6823c
Apply suggestions from code review
Lee01Atom Nov 12, 2024
38d7371
Delete test/tests/ver-1kb/gold/ver-1kb_out.csv
Lee01Atom Nov 12, 2024
650f6d0
Update doc/content/verification_and_validation/ver-1kb.md
Lee01Atom Nov 12, 2024
54593f5
input file modification
Lee01Atom Nov 15, 2024
2b5e6b7
Update doc/content/verification_and_validation/ver-1kb.md
Lee01Atom Nov 19, 2024
cd7fb02
Update doc/content/verification_and_validation/ver-1kb.md
Lee01Atom Nov 19, 2024
c6e6fc4
Update doc/content/verification_and_validation/ver-1kb.md
Lee01Atom Nov 19, 2024
2d5242a
add smaller shorter simulation time
Lee01Atom Nov 19, 2024
ed361c9
add exodus file
Lee01Atom Nov 19, 2024
f6ad7e4
Apply suggestions from code review
Lee01Atom Nov 24, 2024
5537d11
add percentage of mass variation
Lee01Atom Nov 24, 2024
5ba0851
documentation refining mesh
Lee01Atom Nov 24, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/content/verification_and_validation/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ TMAP8 also contains [example cases](examples/tmap_index.md), which showcase how
| ver-1ja | [Radioactive Decay of Mobile Tritium in a Slab](ver-1ja.md) |
| ver-1jb | [Radioactive Decay of Mobile Tritium in a Slab with a Distributed Trap Concentration](ver-1jb.md) |
| ver-1ka | [Simple Volumetric Source](ver-1ka.md) |
| ver-1kb | [Henry’s Law Boundaries with No Volumetric Source](ver-1kb.md) |

# List of benchmarking cases

Expand Down
88 changes: 88 additions & 0 deletions doc/content/verification_and_validation/ver-1kb.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# ver-1kb

# Henry’s Law Boundaries with No Volumetric Source

## General Case Description

Two enclosures are separated by a membrane that allows diffusion according to Henry’s law, with no volumetric source present. Enclosure 2 has twice the volume of Enclosure 1.

## Case Set Up
Lee01Atom marked this conversation as resolved.
Show resolved Hide resolved

This verification problem is taken from [!cite](ambrosek2008verification).

This setup describes a diffusion system in which tritium T$_2$ is modeled across a one-dimensional domain split into two enclosures. The total system length is $2.5 \times 10^{-4}$ m, divided into 100 segments. The system operates at a constant temperature of 500 Kelvin. Initial tritium pressures are specified as $10^{5}$ Pa for Enclosure 1 and $10^{-10}$ Pa for Enclosure 2.

Over time, the pressures of T$_2$, which diffuses across the membrane in accordance with Henry’s law, will gradually equilibrate between the two enclosures.
Lee01Atom marked this conversation as resolved.
Show resolved Hide resolved

The diffusion process in each of the two enclosures can be described by

\begin{equation}
\frac{\partial C_1}{\partial t} = \nabla D \nabla C_1,
\end{equation}
and
\begin{equation}
\frac{\partial C_2}{\partial t} = \nabla D \nabla C_2,
\end{equation}

where $C_1$ and $C_2$ represent the concentration fields in enclosures 1 and 2 respectively, $t$ is the time, and $D$ denotes the diffusivity.

The concentration in Enclosure 1 is related to the partial pressure and concentration in Enclosure 2 via the interface sorption law:

\begin{equation}
C_1 = K P_2^n = K \left( C_2 RT \right)^n
\end{equation}

where $R$ is the ideal gas constant in J/mol/K, $T$ is the temperature in K, $K$ is the solubility, and $n$ is the exponent of the sorption law. For Henry’s law, $n=1$.

## Results
Lee01Atom marked this conversation as resolved.
Show resolved Hide resolved

Two subcases are considered. In the first subcase, we assume that $K=1/RT$ as is done in [!cite](ambrosek2008verification), which is expected to lead to $C_1 = C_2$ at equilibrium. In the second, $K=10/RT$, which is expected to lead to $C_1 = 10 C_2$. This second case is added to exercise TMAP8 in a case with a concentration jump.
In the first subcase, consistent with the results from TMAP7, the pressure evolution in both enclosures is shown in [ver-1kb_comparison_time] as a function of time. Both pressures find equilibrium and become equal, which is consistent with $C_1 = K (RT C_2)^n$ for $K=1/RT$ and $n=1$. The concentration ratio between enclosures 1 and 2 in [ver-1kb_concentration_ratio] shows that the results obtained with TMAP8 are consistent with the analytical results derived from the sorption law for $K R T=1$. As shown in [ver-1kb_mass_conservation], mass is conserved between the two enclosures over time, with a variation in mass of only $1.0$ %. This variation in mass can be further minimized by refining the mesh, i.e., increasing the number of segments in the domain.

!media comparison_ver-1kb.py
image_name=ver-1kb_comparison_time.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_comparison_time
caption=Equilibration of species pressures under Henry’s law for $K = 1/RT$.

!media comparison_ver-1kb.py
image_name=ver-1kb_concentration_ratio.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_concentration_ratio
caption=Concentrations ratio between enclosures 1 and 2 at the interface for $K = 1/RT$. This verifies TMAP8's ability to apply the sorption law across the interface without a concentration jump.

!media comparison_ver-1kb.py
image_name=ver-1kb_mass_conservation.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_mass_conservation
caption=Total mass conservation across both enclosures over time for $K = 1/RT$.

In the second subcase, the sorption law with $K=10/RT$ does not lead to equal pressure in both enclosure. As illustrated in [ver-1kb_comparison_time_k10], the pressure jump maintains a ratio of $C_1/C_2 \approx 10$, which is consistent with the relationship $C_1 = K (RT C_2)^n$ for $K=10/RT$ and $n=1$. The concentration ratio between enclosures 1 and 2 in [ver-1kb_concentration_ratio_k10] shows that the results obtained with TMAP8 are consistent with the analytical results derived from the sorption law for $K RT=10$. Additionally, [ver-1kb_mass_conservation_k10] verifies that mass is conserved between the two enclosures over time, with a variation in mass of only $0.25$ %. As in the previous case, this variation in mass can be further reduced by refining the mesh.

!media comparison_ver-1kb.py
image_name=ver-1kb_comparison_time_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_comparison_time_k10
caption=Pressures jump of species under Henry’s law for $K = 10/RT$.

!media comparison_ver-1kb.py
image_name=ver-1kb_concentration_ratio_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_concentration_ratio_k10
caption=Concentrations ratio between enclosures 1 and 2 at the interface for $K = 10/RT$. This verifies TMAP8's ability to apply the sorption law across the interface with a concentration jump.

!media comparison_ver-1kb.py
image_name=ver-1kb_mass_conservation_k10.png
style=width:50%;margin-bottom:2%;margin-left:auto;margin-right:auto
id=ver-1kb_mass_conservation_k10
caption=Total mass conservation across both enclosures over time for $K = 10/RT$.

!alert note title=A Comparison with TMAP7 Results: Impact of Diffusivity Variations on Kinetics
The kinetics observed in our results differ from those presented in TMAP7. We attribute this discrepancy to a variation in the diffusivity value used, which significantly affects the diffusion rate.

## Input files

!style halign=left
The input file for this case can be found at [/ver-1kb.i], which is also used as tests in TMAP8 at [/ver-1kb/tests].

!bibtex bibliography
145 changes: 145 additions & 0 deletions test/tests/ver-1kb/comparison_ver-1kb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
import numpy as np
Lee01Atom marked this conversation as resolved.
Show resolved Hide resolved
import pandas as pd
import os
from matplotlib import gridspec
import matplotlib.pyplot as plt

# Changes working directory to script directory (for consistent MooseDocs usage)
script_folder = os.path.dirname(__file__)
os.chdir(script_folder)

# Extract columns for time, pressures, concentration_enclosure_1_at_interface, and concentration_enclosure_2_at_interface
if "/TMAP8/doc/" in script_folder: # if in documentation folder
csv_folder = "../../../../test/tests/ver-1kb/gold/ver-1kb_out_k1.csv"
else: # if in test folder
csv_folder = "./gold/ver-1kb_out_k1.csv"
expt_data = pd.read_csv(csv_folder)
TMAP8_time = expt_data['time']
TMAP8_pressure_enclosure_1 = expt_data['pressure_enclosure_1']
TMAP8_pressure_enclosure_2 = expt_data['pressure_enclosure_2']
concentration_enclosure_1_at_interface = expt_data['concentration_enclosure_1_at_interface']
pressure_enclosure_2_at_interface = expt_data['pressure_enclosure_2_at_interface']
mass_conservation_sum_encl1_encl2 = expt_data['mass_conservation_sum_encl1_encl2'].values
concentration_ratio = expt_data['concentration_ratio']

# Subplot 1: Pressure vs time
fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

ax.plot(TMAP8_time, TMAP8_pressure_enclosure_1, label=r"T$_2$ Enclosure 1", c='tab:red', linestyle='-')
ax.plot(TMAP8_time, TMAP8_pressure_enclosure_2, label=r"T$_2$ Enclosure 2", c='tab:blue', linestyle='-')
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda val, pos: '{:.1e}'.format(val)))
ax.set_xlabel('Time (s)')
ax.set_ylabel('Pressure (Pa)')
ax.set_xlim(0, TMAP8_time.max())
ax.set_ylim(bottom=0)
ax.legend(loc="best")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
fig.savefig('ver-1kb_comparison_time.png', bbox_inches='tight', dpi=300)

# Subplot 2: Solubility and concentration ratios vs time
fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

solubility_ratio = [1] * len(TMAP8_time[1:])
ax.plot(TMAP8_time[1:], concentration_ratio[1:], label=r"Concentration Ratio (TMAP8)", color='tab:blue', linestyle='-')
ax.plot(TMAP8_time[1:], solubility_ratio, label=r"Solubility Ratio (Analytical)", color='tab:red', linestyle='--')
ax.set_yticks(np.arange(0, 3, 1))
ax.set_xlim(0,TMAP8_time.max())
ax.set_xlabel('Time (s)')
ax.set_ylabel(r"Concentrations ratio $C_{\text{encl1}} / C_{\text{encl2}}$")
ax.legend(loc="best")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
RMSE = np.sqrt(np.mean((concentration_ratio[1:]-solubility_ratio)**2) )
RMSPE = RMSE*100/np.mean(solubility_ratio)
x_pos = TMAP8_time.max() / 7200
y_pos = 0.9 * ax.get_ylim()[1]
ax.text(x_pos, y_pos, 'RMSPE = %.3f ' % RMSPE + '%', fontweight='bold')
fig.savefig('ver-1kb_concentration_ratio.png', bbox_inches='tight', dpi=300)

# Subplot 3: Mass Conservation Sum Encl 1 and 2 vs Time

fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

ax.plot(TMAP8_time, mass_conservation_sum_encl1_encl2, c='tab:blue')
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda val, pos: '{:.3e}'.format(val)))
ax.set_xlabel('Time (s)')
ax.set_ylabel(r"Mass Conservation Sum Encl 1 and 2 (mol/m$^3$)")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
mass_variation_percentage = (np.max(mass_conservation_sum_encl1_encl2)-np.min(mass_conservation_sum_encl1_encl2))/np.min(mass_conservation_sum_encl1_encl2)*100
print("Percentage of mass variation: ", mass_variation_percentage)
fig.savefig('ver-1kb_mass_conservation.png', bbox_inches='tight', dpi=300)

# Repeat the same for K=10/RT

if "/TMAP8/doc/" in script_folder: # if in documentation folder
csv_folder_k10 = "../../../../test/tests/ver-1kb/gold/ver-1kb_out_k10.csv"
else: # if in test folder
csv_folder_k10 = "./gold/ver-1kb_out_k10.csv"
expt_data_k10 = pd.read_csv(csv_folder_k10)
TMAP8_time_k10 = expt_data_k10['time']
TMAP8_pressure_enclosure_1_k10 = expt_data_k10['pressure_enclosure_1']
TMAP8_pressure_enclosure_2_k10 = expt_data_k10['pressure_enclosure_2']
concentration_enclosure_1_at_interface_k10 = expt_data_k10['concentration_enclosure_1_at_interface']
pressure_enclosure_2_at_interface_k10 = expt_data_k10['pressure_enclosure_2_at_interface']
mass_conservation_sum_encl1_encl2_k10 = expt_data_k10['mass_conservation_sum_encl1_encl2'].values
concentration_ratio_k10 = expt_data_k10['concentration_ratio']

# Subplot 1 : Pressure vs time

fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

ax.plot(TMAP8_time_k10, TMAP8_pressure_enclosure_1_k10, label=r"T$_2$ Enclosure 1", c='tab:red', linestyle='-')
ax.plot(TMAP8_time_k10, TMAP8_pressure_enclosure_2_k10, label=r"T$_2$ Enclosure 2", c='tab:blue', linestyle='-')
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda val, pos: '{:.1e}'.format(val)))
ax.set_xlabel('Time (s)')
ax.set_ylabel('Pressure (Pa)')
ax.set_xlim(0, TMAP8_time.max())
ax.set_ylim(bottom=0)
ax.legend(loc="best")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
fig.savefig('ver-1kb_comparison_time_k10.png', bbox_inches='tight', dpi=300)

# Subplot 2: Solubility and concentration ratios vs time

fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

solubility_ratio = [10] * len(TMAP8_time[1:])
ax.plot(TMAP8_time[1:], concentration_ratio_k10[1:], label=r"Concentration Ratio (TMAP8)", color='tab:blue', linestyle='-')
ax.plot(TMAP8_time[1:], solubility_ratio, label=r"Solubility Ratio (Analytical)", color='tab:red', linestyle='--')
ax.set_yticks(np.arange(0, 21, 10))
ax.set_xlim(0,TMAP8_time.max())
ax.set_xlabel('Time (s)')
ax.set_ylabel(r"Concentrations ratio $C_{\text{encl1}} / C_{\text{encl2}}$")
ax.legend(loc="best")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
RMSE = np.sqrt(np.mean((concentration_ratio_k10[1:]-solubility_ratio)**2))
RMSPE = RMSE*100/np.mean(solubility_ratio)
x_pos = TMAP8_time.max() / 7200
y_pos = 0.9 * ax.get_ylim()[1]
ax.text(x_pos, y_pos, 'RMSPE = %.3f ' % RMSPE + '%', fontweight='bold')
fig.savefig('ver-1kb_concentration_ratio_k10.png', bbox_inches='tight', dpi=300)

# Subplot 3 : Mass Conservation Sum Encl 1 and 2 vs Time

fig = plt.figure(figsize=[6.5,5.5])
gs = gridspec.GridSpec(1,1)
ax = fig.add_subplot(gs[0])

ax.plot(TMAP8_time_k10, mass_conservation_sum_encl1_encl2_k10, c='tab:blue')
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda val, pos: '{:.3e}'.format(val)))
ax.set_xlabel('Time (s)')
ax.set_ylabel(r"Mass Conservation Sum Encl 1 and 2 (mol/m$^3$)")
ax.grid(which='major', color='0.65', linestyle='--', alpha=0.3)
mass_variation_percentage = (np.max(mass_conservation_sum_encl1_encl2_k10)-np.min(mass_conservation_sum_encl1_encl2_k10))/np.min(mass_conservation_sum_encl1_encl2_k10)*100
print("Percentage of mass variation: ", mass_variation_percentage)
fig.savefig('ver-1kb_mass_conservation_k10.png', bbox_inches='tight', dpi=300)

Loading