forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
910 lines (825 loc) · 30.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from dataclasses import dataclass
from typing import Optional, Sequence
import torch
from tensordict.nn import InteractionType
from torch import distributions as d, nn
from torchrl.data.tensor_specs import (
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.data.utils import DEVICE_TYPING
from torchrl.envs.common import EnvBase
from torchrl.envs.model_based.dreamer import DreamerEnv
from torchrl.envs.transforms import TensorDictPrimer, TransformedEnv
from torchrl.envs.utils import ExplorationType, set_exploration_type
from torchrl.modules import (
NoisyLinear,
NormalParamWrapper,
SafeModule,
SafeProbabilisticModule,
SafeProbabilisticTensorDictSequential,
SafeSequential,
)
from torchrl.modules.distributions import (
Delta,
OneHotCategorical,
TanhDelta,
TanhNormal,
)
from torchrl.modules.distributions.continuous import SafeTanhTransform
from torchrl.modules.models.exploration import LazygSDEModule
from torchrl.modules.models.model_based import (
DreamerActor,
ObsDecoder,
ObsEncoder,
RSSMPosterior,
RSSMPrior,
RSSMRollout,
)
from torchrl.modules.models.models import (
DdpgCnnActor,
DdpgCnnQNet,
DuelingCnnDQNet,
DuelingMlpDQNet,
MLP,
)
from torchrl.modules.tensordict_module import (
Actor,
DistributionalQValueActor,
QValueActor,
)
from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
from torchrl.modules.tensordict_module.world_models import WorldModelWrapper
from torchrl.trainers.helpers import transformed_env_constructor
DISTRIBUTIONS = {
"delta": Delta,
"tanh-normal": TanhNormal,
"categorical": OneHotCategorical,
"tanh-delta": TanhDelta,
}
ACTIVATIONS = {
"elu": nn.ELU,
"tanh": nn.Tanh,
"relu": nn.ReLU,
}
def make_dqn_actor(
proof_environment: EnvBase, cfg: "DictConfig", device: torch.device # noqa: F821
) -> Actor:
"""DQN constructor helper function.
Args:
proof_environment (EnvBase): a dummy environment to retrieve the observation and action spec.
cfg (DictConfig): contains arguments of the DQN script
device (torch.device): device on which the model must be cast
Returns:
A DQN policy operator.
Examples:
>>> from torchrl.trainers.helpers.models import make_dqn_actor, DiscreteModelConfig
>>> from torchrl.trainers.helpers.envs import EnvConfig
>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.envs.transforms import ToTensorImage, TransformedEnv
>>> import hydra
>>> from hydra.core.config_store import ConfigStore
>>> import dataclasses
>>> proof_environment = TransformedEnv(GymEnv("ALE/Pong-v5",
... pixels_only=True), ToTensorImage())
>>> device = torch.device("cpu")
>>> config_fields = [(config_field.name, config_field.type, config_field) for config_cls in
... (DiscreteModelConfig, EnvConfig)
... for config_field in dataclasses.fields(config_cls)]
>>> Config = dataclasses.make_dataclass(cls_name="Config", fields=config_fields)
>>> cs = ConfigStore.instance()
>>> cs.store(name="config", node=Config)
>>> with initialize(config_path=None):
>>> cfg = compose(config_name="config")
>>> actor = make_dqn_actor(proof_environment, cfg, device)
>>> td = proof_environment.reset()
>>> print(actor(td))
TensorDict(
fields={
done: Tensor(torch.Size([1]), dtype=torch.bool),
pixels: Tensor(torch.Size([3, 210, 160]), dtype=torch.float32),
action: Tensor(torch.Size([6]), dtype=torch.int64),
action_value: Tensor(torch.Size([6]), dtype=torch.float32),
chosen_action_value: Tensor(torch.Size([1]), dtype=torch.float32)},
batch_size=torch.Size([]),
device=cpu,
is_shared=False)
"""
env_specs = proof_environment.specs
atoms = cfg.atoms if cfg.distributional else None
linear_layer_class = torch.nn.Linear if not cfg.noisy else NoisyLinear
action_spec = env_specs["input_spec", "full_action_spec", "action"]
if action_spec.domain != "discrete":
raise ValueError(
f"env {proof_environment} has an action domain "
f"{action_spec.domain} which is incompatible with "
f"DQN. Make sure your environment has a discrete "
f"domain."
)
if cfg.from_pixels:
net_class = DuelingCnnDQNet
default_net_kwargs = {
"cnn_kwargs": {
"bias_last_layer": True,
"depth": None,
"num_cells": [32, 64, 64],
"kernel_sizes": [8, 4, 3],
"strides": [4, 2, 1],
},
"mlp_kwargs": {"num_cells": 512, "layer_class": linear_layer_class},
}
in_key = "pixels"
else:
net_class = DuelingMlpDQNet
default_net_kwargs = {
"mlp_kwargs_feature": {}, # see class for details
"mlp_kwargs_output": {"num_cells": 512, "layer_class": linear_layer_class},
}
# automatically infer in key
(in_key,) = itertools.islice(
env_specs["output_spec", "full_observation_spec"], 1
)
actor_class = QValueActor
actor_kwargs = {}
if isinstance(action_spec, DiscreteTensorSpec):
# if action spec is modeled as categorical variable, we still need to have features equal
# to the number of possible choices and also set categorical behavioural for actors.
actor_kwargs.update({"action_space": "categorical"})
out_features = env_specs["input_spec", "full_action_spec", "action"].space.n
else:
out_features = action_spec.shape[0]
if cfg.distributional:
if not atoms:
raise RuntimeError(
"Expected atoms to be a positive integer, " f"got {atoms}"
)
vmin = -3
vmax = 3
out_features = (atoms, out_features)
support = torch.linspace(vmin, vmax, atoms)
actor_class = DistributionalQValueActor
actor_kwargs.update({"support": support})
default_net_kwargs.update({"out_features_value": (atoms, 1)})
net = net_class(
out_features=out_features,
**default_net_kwargs,
)
model = actor_class(
module=net,
spec=CompositeSpec(action=action_spec),
in_keys=[in_key],
safe=True,
**actor_kwargs,
).to(device)
# init
with torch.no_grad():
td = proof_environment.fake_tensordict()
td = td.unsqueeze(-1)
model(td.to(device))
return model
def make_redq_model(
proof_environment: EnvBase,
cfg: "DictConfig", # noqa: F821
device: DEVICE_TYPING = "cpu",
in_keys: Optional[Sequence[str]] = None,
actor_net_kwargs=None,
qvalue_net_kwargs=None,
observation_key=None,
**kwargs,
) -> nn.ModuleList:
"""Actor and Q-value model constructor helper function for REDQ.
Follows default parameters proposed in REDQ original paper: https://openreview.net/pdf?id=AY8zfZm0tDd.
Other configurations can easily be implemented by modifying this function at will.
A single instance of the Q-value model is returned. It will be multiplicated by the loss function.
Args:
proof_environment (EnvBase): a dummy environment to retrieve the observation and action spec
cfg (DictConfig): contains arguments of the REDQ script
device (torch.device, optional): device on which the model must be cast. Default is "cpu".
in_keys (iterable of strings, optional): observation key to be read by the actor, usually one of
`'observation_vector'` or `'pixels'`. If none is provided, one of these two keys is chosen
based on the `cfg.from_pixels` argument.
actor_net_kwargs (dict, optional): kwargs of the actor MLP.
qvalue_net_kwargs (dict, optional): kwargs of the qvalue MLP.
Returns:
A nn.ModuleList containing the actor, qvalue operator(s) and the value operator.
Examples:
>>> from torchrl.trainers.helpers.envs import parser_env_args
>>> from torchrl.trainers.helpers.models import make_redq_model, parser_model_args_continuous
>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.envs.transforms import CatTensors, TransformedEnv, DoubleToFloat, Compose
>>> import hydra
>>> from hydra.core.config_store import ConfigStore
>>> import dataclasses
>>> proof_environment = TransformedEnv(GymEnv("HalfCheetah-v2"), Compose(DoubleToFloat(["observation"]),
... CatTensors(["observation"], "observation_vector")))
>>> device = torch.device("cpu")
>>> config_fields = [(config_field.name, config_field.type, config_field) for config_cls in
... (RedqModelConfig, EnvConfig)
... for config_field in dataclasses.fields(config_cls)]
>>> Config = dataclasses.make_dataclass(cls_name="Config", fields=config_fields)
>>> cs = ConfigStore.instance()
>>> cs.store(name="config", node=Config)
>>> with initialize(config_path=None):
>>> cfg = compose(config_name="config")
>>> model = make_redq_model(
... proof_environment,
... device=device,
... cfg=cfg,
... )
>>> actor, qvalue = model
>>> td = proof_environment.reset()
>>> print(actor(td))
TensorDict(
fields={
done: Tensor(torch.Size([1]), dtype=torch.bool),
observation_vector: Tensor(torch.Size([17]), dtype=torch.float32),
loc: Tensor(torch.Size([6]), dtype=torch.float32),
scale: Tensor(torch.Size([6]), dtype=torch.float32),
action: Tensor(torch.Size([6]), dtype=torch.float32),
sample_log_prob: Tensor(torch.Size([1]), dtype=torch.float32)},
batch_size=torch.Size([]),
device=cpu,
is_shared=False)
>>> print(qvalue(td.clone()))
TensorDict(
fields={
done: Tensor(torch.Size([1]), dtype=torch.bool),
observation_vector: Tensor(torch.Size([17]), dtype=torch.float32),
loc: Tensor(torch.Size([6]), dtype=torch.float32),
scale: Tensor(torch.Size([6]), dtype=torch.float32),
action: Tensor(torch.Size([6]), dtype=torch.float32),
sample_log_prob: Tensor(torch.Size([1]), dtype=torch.float32),
state_action_value: Tensor(torch.Size([1]), dtype=torch.float32)},
batch_size=torch.Size([]),
device=cpu,
is_shared=False)
"""
tanh_loc = cfg.tanh_loc
default_policy_scale = cfg.default_policy_scale
gSDE = cfg.gSDE
action_spec = proof_environment.action_spec
# obs_spec = proof_environment.observation_spec
# if observation_key is not None:
# obs_spec = obs_spec[observation_key]
# else:
# obs_spec_values = list(obs_spec.values())
# if len(obs_spec_values) > 1:
# raise RuntimeError(
# "There is more than one observation in the spec, REDQ helper "
# "cannot infer automatically which to pick. "
# "Please indicate which key to read via the `observation_key` "
# "keyword in this helper."
# )
# else:
# obs_spec = obs_spec_values[0]
if actor_net_kwargs is None:
actor_net_kwargs = {}
if qvalue_net_kwargs is None:
qvalue_net_kwargs = {}
linear_layer_class = torch.nn.Linear if not cfg.noisy else NoisyLinear
out_features_actor = (2 - gSDE) * action_spec.shape[-1]
if cfg.from_pixels:
if in_keys is None:
in_keys_actor = ["pixels"]
else:
in_keys_actor = in_keys
actor_net_kwargs_default = {
"mlp_net_kwargs": {
"layer_class": linear_layer_class,
"activation_class": ACTIVATIONS[cfg.activation],
},
"conv_net_kwargs": {"activation_class": ACTIVATIONS[cfg.activation]},
}
actor_net_kwargs_default.update(actor_net_kwargs)
actor_net = DdpgCnnActor(out_features_actor, **actor_net_kwargs_default)
gSDE_state_key = "hidden"
out_keys_actor = ["param", "hidden"]
value_net_default_kwargs = {
"mlp_net_kwargs": {
"layer_class": linear_layer_class,
"activation_class": ACTIVATIONS[cfg.activation],
},
"conv_net_kwargs": {"activation_class": ACTIVATIONS[cfg.activation]},
}
value_net_default_kwargs.update(qvalue_net_kwargs)
in_keys_qvalue = ["pixels", "action"]
qvalue_net = DdpgCnnQNet(**value_net_default_kwargs)
else:
if in_keys is None:
in_keys_actor = ["observation_vector"]
else:
in_keys_actor = in_keys
actor_net_kwargs_default = {
"num_cells": [cfg.actor_cells, cfg.actor_cells],
"out_features": out_features_actor,
"activation_class": ACTIVATIONS[cfg.activation],
}
actor_net_kwargs_default.update(actor_net_kwargs)
actor_net = MLP(**actor_net_kwargs_default)
out_keys_actor = ["param"]
gSDE_state_key = in_keys_actor[0]
qvalue_net_kwargs_default = {
"num_cells": [cfg.qvalue_cells, cfg.qvalue_cells],
"out_features": 1,
"activation_class": ACTIVATIONS[cfg.activation],
}
qvalue_net_kwargs_default.update(qvalue_net_kwargs)
qvalue_net = MLP(
**qvalue_net_kwargs_default,
)
in_keys_qvalue = in_keys_actor + ["action"]
dist_class = TanhNormal
dist_kwargs = {
"min": action_spec.space.low,
"max": action_spec.space.high,
"tanh_loc": tanh_loc,
}
if not gSDE:
actor_net = NormalParamWrapper(
actor_net,
scale_mapping=f"biased_softplus_{default_policy_scale}",
scale_lb=cfg.scale_lb,
)
actor_module = SafeModule(
actor_net,
in_keys=in_keys_actor,
out_keys=["loc", "scale"] + out_keys_actor[1:],
)
else:
actor_module = SafeModule(
actor_net,
in_keys=in_keys_actor,
out_keys=["action"] + out_keys_actor[1:], # will be overwritten
)
if action_spec.domain == "continuous":
min = action_spec.space.low
max = action_spec.space.high
transform = SafeTanhTransform()
if (min != -1).any() or (max != 1).any():
transform = d.ComposeTransform(
transform,
d.AffineTransform(loc=(max + min) / 2, scale=(max - min) / 2),
)
else:
raise RuntimeError("cannot use gSDE with discrete actions")
actor_module = SafeSequential(
actor_module,
SafeModule(
LazygSDEModule(transform=transform),
in_keys=["action", gSDE_state_key, "_eps_gSDE"],
out_keys=["loc", "scale", "action", "_eps_gSDE"],
),
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=dist_class,
distribution_kwargs=dist_kwargs,
default_interaction_type=InteractionType.RANDOM,
return_log_prob=True,
)
qvalue = ValueOperator(
in_keys=in_keys_qvalue,
module=qvalue_net,
)
model = nn.ModuleList([actor, qvalue]).to(device)
# init nets
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
td = proof_environment.fake_tensordict()
td = td.unsqueeze(-1)
td = td.to(device)
for net in model:
net(td)
del td
return model
def make_dreamer(
cfg: "DictConfig", # noqa: F821
proof_environment: EnvBase = None,
device: DEVICE_TYPING = "cpu",
action_key: str = "action",
value_key: str = "state_value",
use_decoder_in_env: bool = False,
obs_norm_state_dict=None,
) -> nn.ModuleList:
"""Create Dreamer components.
Args:
cfg (DictConfig): Config object.
proof_environment (EnvBase): Environment to initialize the model.
device (DEVICE_TYPING, optional): Device to use.
Defaults to "cpu".
action_key (str, optional): Key to use for the action.
Defaults to "action".
value_key (str, optional): Key to use for the value.
Defaults to "state_value".
use_decoder_in_env (bool, optional): Whether to use the decoder in the model based dreamer env.
Defaults to False.
obs_norm_state_dict (dict, optional): the state_dict of the ObservationNorm transform used
when proof_environment is missing. Defaults to None.
Returns:
nn.TensorDictModel: Dreamer World model.
nn.TensorDictModel: Dreamer Model based environnement.
nn.TensorDictModel: Dreamer Actor the world model space.
nn.TensorDictModel: Dreamer Value model.
nn.TensorDictModel: Dreamer Actor for the real world space.
"""
proof_env_is_none = proof_environment is None
if proof_env_is_none:
proof_environment = transformed_env_constructor(
cfg=cfg, use_env_creator=False, obs_norm_state_dict=obs_norm_state_dict
)()
# Modules
obs_encoder = ObsEncoder()
obs_decoder = ObsDecoder()
rssm_prior = RSSMPrior(
hidden_dim=cfg.rssm_hidden_dim,
rnn_hidden_dim=cfg.rssm_hidden_dim,
state_dim=cfg.state_dim,
action_spec=proof_environment.action_spec,
)
rssm_posterior = RSSMPosterior(
hidden_dim=cfg.rssm_hidden_dim, state_dim=cfg.state_dim
)
reward_module = MLP(
out_features=1, depth=2, num_cells=cfg.mlp_num_units, activation_class=nn.ELU
)
world_model = _dreamer_make_world_model(
obs_encoder, obs_decoder, rssm_prior, rssm_posterior, reward_module
).to(device)
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
tensordict = proof_environment.fake_tensordict().unsqueeze(-1)
tensordict = tensordict.to_tensordict().to(device)
tensordict = tensordict.to(device)
world_model(tensordict)
model_based_env = _dreamer_make_mbenv(
reward_module,
rssm_prior,
obs_decoder,
proof_environment,
use_decoder_in_env,
cfg.state_dim,
cfg.rssm_hidden_dim,
)
model_based_env = model_based_env.to(device)
actor_simulator, actor_realworld = _dreamer_make_actors(
obs_encoder,
rssm_prior,
rssm_posterior,
cfg.mlp_num_units,
action_key,
proof_environment,
)
actor_simulator = actor_simulator.to(device)
value_model = _dreamer_make_value_model(cfg.mlp_num_units, value_key)
value_model = value_model.to(device)
with torch.no_grad(), set_exploration_type(ExplorationType.RANDOM):
tensordict = model_based_env.fake_tensordict().unsqueeze(-1)
tensordict = tensordict.to(device)
tensordict = actor_simulator(tensordict)
value_model(tensordict)
actor_realworld = actor_realworld.to(device)
if proof_env_is_none:
proof_environment.close()
torch.cuda.empty_cache()
del proof_environment
del tensordict
return world_model, model_based_env, actor_simulator, value_model, actor_realworld
def _dreamer_make_world_model(
obs_encoder, obs_decoder, rssm_prior, rssm_posterior, reward_module
):
# World Model and reward model
rssm_rollout = RSSMRollout(
SafeModule(
rssm_prior,
in_keys=["state", "belief", "action"],
out_keys=[
("next", "prior_mean"),
("next", "prior_std"),
"_",
("next", "belief"),
],
),
SafeModule(
rssm_posterior,
in_keys=[("next", "belief"), ("next", "encoded_latents")],
out_keys=[
("next", "posterior_mean"),
("next", "posterior_std"),
("next", "state"),
],
),
)
transition_model = SafeSequential(
SafeModule(
obs_encoder,
in_keys=[("next", "pixels")],
out_keys=[("next", "encoded_latents")],
),
rssm_rollout,
SafeModule(
obs_decoder,
in_keys=[("next", "state"), ("next", "belief")],
out_keys=[("next", "reco_pixels")],
),
)
reward_model = SafeModule(
reward_module,
in_keys=[("next", "state"), ("next", "belief")],
out_keys=[("next", "reward")],
)
world_model = WorldModelWrapper(
transition_model,
reward_model,
)
return world_model
def _dreamer_make_actors(
obs_encoder,
rssm_prior,
rssm_posterior,
mlp_num_units,
action_key,
proof_environment,
):
actor_module = DreamerActor(
out_features=proof_environment.action_spec.shape[0],
depth=3,
num_cells=mlp_num_units,
activation_class=nn.ELU,
)
actor_simulator = _dreamer_make_actor_sim(
action_key, proof_environment, actor_module
)
actor_realworld = _dreamer_make_actor_real(
obs_encoder,
rssm_prior,
rssm_posterior,
actor_module,
action_key,
proof_environment,
)
return actor_simulator, actor_realworld
def _dreamer_make_actor_sim(action_key, proof_environment, actor_module):
actor_simulator = SafeProbabilisticTensorDictSequential(
SafeModule(
actor_module,
in_keys=["state", "belief"],
out_keys=["loc", "scale"],
spec=CompositeSpec(
**{
"loc": UnboundedContinuousTensorSpec(
proof_environment.action_spec.shape,
device=proof_environment.action_spec.device,
),
"scale": UnboundedContinuousTensorSpec(
proof_environment.action_spec.shape,
device=proof_environment.action_spec.device,
),
}
),
),
SafeProbabilisticModule(
in_keys=["loc", "scale"],
out_keys=[action_key],
default_interaction_type=InteractionType.RANDOM,
distribution_class=TanhNormal,
spec=CompositeSpec(**{action_key: proof_environment.action_spec}),
),
)
return actor_simulator
def _dreamer_make_actor_real(
obs_encoder, rssm_prior, rssm_posterior, actor_module, action_key, proof_environment
):
# actor for real world: interacts with states ~ posterior
# Out actor differs from the original paper where first they compute prior and posterior and then act on it
# but we found that this approach worked better.
actor_realworld = SafeSequential(
SafeModule(
obs_encoder,
in_keys=["pixels"],
out_keys=["encoded_latents"],
),
SafeModule(
rssm_posterior,
in_keys=["belief", "encoded_latents"],
out_keys=[
"_",
"_",
"state",
],
),
SafeProbabilisticTensorDictSequential(
SafeModule(
actor_module,
in_keys=["state", "belief"],
out_keys=["loc", "scale"],
spec=CompositeSpec(
**{
"loc": UnboundedContinuousTensorSpec(
proof_environment.action_spec.shape,
),
"scale": UnboundedContinuousTensorSpec(
proof_environment.action_spec.shape,
),
}
),
),
SafeProbabilisticModule(
in_keys=["loc", "scale"],
out_keys=[action_key],
default_interaction_type=InteractionType.RANDOM,
distribution_class=TanhNormal,
spec=CompositeSpec(
**{action_key: proof_environment.action_spec.to("cpu")}
),
),
),
SafeModule(
rssm_prior,
in_keys=["state", "belief", action_key],
out_keys=[
"_",
"_",
"_", # we don't need the prior state
("next", "belief"),
],
),
)
return actor_realworld
def _dreamer_make_value_model(mlp_num_units, value_key):
# actor for simulator: interacts with states ~ prior
value_model = SafeModule(
MLP(
out_features=1,
depth=3,
num_cells=mlp_num_units,
activation_class=nn.ELU,
),
in_keys=["state", "belief"],
out_keys=[value_key],
)
return value_model
def _dreamer_make_mbenv(
reward_module,
rssm_prior,
obs_decoder,
proof_environment,
use_decoder_in_env,
state_dim,
rssm_hidden_dim,
):
# MB environment
if use_decoder_in_env:
mb_env_obs_decoder = SafeModule(
obs_decoder,
in_keys=[("next", "state"), ("next", "belief")],
out_keys=[("next", "reco_pixels")],
)
else:
mb_env_obs_decoder = None
transition_model = SafeSequential(
SafeModule(
rssm_prior,
in_keys=["state", "belief", "action"],
out_keys=[
"_",
"_",
"state",
"belief",
],
),
)
reward_model = SafeModule(
reward_module,
in_keys=["state", "belief"],
out_keys=["reward"],
)
model_based_env = DreamerEnv(
world_model=WorldModelWrapper(
transition_model,
reward_model,
),
prior_shape=torch.Size([state_dim]),
belief_shape=torch.Size([rssm_hidden_dim]),
obs_decoder=mb_env_obs_decoder,
)
model_based_env.set_specs_from_env(proof_environment)
model_based_env = TransformedEnv(model_based_env)
default_dict = {
"state": UnboundedContinuousTensorSpec(state_dim),
"belief": UnboundedContinuousTensorSpec(rssm_hidden_dim),
# "action": proof_environment.action_spec,
}
model_based_env.append_transform(
TensorDictPrimer(random=False, default_value=0, **default_dict)
)
return model_based_env
@dataclass
class DreamerConfig:
"""Dreamer model config struct."""
batch_length: int = 50
state_dim: int = 30
rssm_hidden_dim: int = 200
mlp_num_units: int = 400
grad_clip: int = 100
world_model_lr: float = 6e-4
actor_value_lr: float = 8e-5
imagination_horizon: int = 15
model_device: str = ""
# Decay of the reward moving averaging
exploration: str = "additive_gaussian"
# One of "additive_gaussian", "ou_exploration" or ""
@dataclass
class REDQModelConfig:
"""REDQ model config struct."""
annealing_frames: int = 1000000
# float of frames used for annealing of the OrnsteinUhlenbeckProcess. Default=1e6.
noisy: bool = False
# whether to use NoisyLinearLayers in the value network.
ou_exploration: bool = False
# wraps the policy in an OU exploration wrapper, similar to DDPG. SAC being designed for
# efficient entropy-based exploration, this should be left for experimentation only.
ou_sigma: float = 0.2
# Ornstein-Uhlenbeck sigma
ou_theta: float = 0.15
# Aimed at superseeding --ou_exploration.
distributional: bool = False
# whether a distributional loss should be used (TODO: not implemented yet).
atoms: int = 51
# number of atoms used for the distributional loss (TODO)
gSDE: bool = False
# if True, exploration is achieved using the gSDE technique.
tanh_loc: bool = False
# if True, uses a Tanh-Normal transform for the policy location of the form
# upscale * tanh(loc/upscale) (only available with TanhTransform and TruncatedGaussian distributions)
default_policy_scale: float = 1.0
# Default policy scale parameter
distribution: str = "tanh_normal"
# if True, uses a Tanh-Normal-Tanh distribution for the policy
actor_cells: int = 256
# cells of the actor
qvalue_cells: int = 256
# cells of the qvalue net
scale_lb: float = 0.1
# min value of scale
value_cells: int = 256
# cells of the value net
activation: str = "tanh"
# activation function, either relu or elu or tanh, Default=tanh
@dataclass
class ContinuousModelConfig:
"""Continuous control model config struct."""
annealing_frames: int = 1000000
# float of frames used for annealing of the OrnsteinUhlenbeckProcess. Default=1e6.
noisy: bool = False
# whether to use NoisyLinearLayers in the value network.
ou_exploration: bool = False
# wraps the policy in an OU exploration wrapper, similar to DDPG. SAC being designed for
# efficient entropy-based exploration, this should be left for experimentation only.
ou_sigma: float = 0.2
# Ornstein-Uhlenbeck sigma
ou_theta: float = 0.15
# Aimed at superseeding --ou_exploration.
distributional: bool = False
# whether a distributional loss should be used (TODO: not implemented yet).
atoms: int = 51
# number of atoms used for the distributional loss (TODO)
gSDE: bool = False
# if True, exploration is achieved using the gSDE technique.
tanh_loc: bool = False
# if True, uses a Tanh-Normal transform for the policy location of the form
# upscale * tanh(loc/upscale) (only available with TanhTransform and TruncatedGaussian distributions)
default_policy_scale: float = 1.0
# Default policy scale parameter
distribution: str = "tanh_normal"
# if True, uses a Tanh-Normal-Tanh distribution for the policy
lstm: bool = False
# if True, uses an LSTM for the policy.
shared_mapping: bool = False
# if True, the first layers of the actor-critic are shared.
actor_cells: int = 256
# cells of the actor
qvalue_cells: int = 256
# cells of the qvalue net
scale_lb: float = 0.1
# min value of scale
value_cells: int = 256
# cells of the value net
activation: str = "tanh"
# activation function, either relu or elu or tanh, Default=tanh
@dataclass
class DiscreteModelConfig:
"""Discrete model config struct."""
annealing_frames: int = 1000000
# Number of frames used for annealing of the EGreedy exploration. Default=1e6.
noisy: bool = False
# whether to use NoisyLinearLayers in the value network
distributional: bool = False
# whether a distributional loss should be used.
atoms: int = 51
# number of atoms used for the distributional loss