forked from huggingface/text-generation-inference
-
Notifications
You must be signed in to change notification settings - Fork 47
/
update_doc.py
136 lines (109 loc) · 4.31 KB
/
update_doc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import subprocess
import argparse
import ast
TEMPLATE = """
# Supported Models and Hardware
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
## Supported Models
SUPPORTED_MODELS
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
```python
# for causal LMs/text-generation models
AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
# or, for text-to-text generation models
AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")
```
If you wish to serve a supported model that already exists on a local folder, just point to the local folder.
```bash
text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM>
```
"""
def check_cli(check: bool):
output = subprocess.check_output(["text-generation-launcher", "--help"]).decode(
"utf-8"
)
wrap_code_blocks_flag = "<!-- WRAP CODE BLOCKS -->"
final_doc = f"# Text-generation-launcher arguments\n\n{wrap_code_blocks_flag}\n\n"
lines = output.split("\n")
header = ""
block = []
for line in lines:
if line.startswith(" -") or line.startswith(" -"):
rendered_block = "\n".join(block)
if header:
final_doc += f"## {header}\n```shell\n{rendered_block}\n```\n"
else:
final_doc += f"```shell\n{rendered_block}\n```\n"
block = []
tokens = line.split("<")
if len(tokens) > 1:
header = tokens[-1][:-1]
else:
header = line.split("--")[-1]
header = header.upper().replace("-", "_")
block.append(line)
rendered_block = "\n".join(block)
final_doc += f"## {header}\n```shell\n{rendered_block}\n```\n"
block = []
filename = "docs/source/basic_tutorials/launcher.md"
if check:
with open(filename, "r") as f:
doc = f.read()
if doc != final_doc:
tmp = "launcher.md"
with open(tmp, "w") as g:
g.write(final_doc)
diff = subprocess.run(
["diff", tmp, filename], capture_output=True
).stdout.decode("utf-8")
print(diff)
raise Exception(
"Cli arguments Doc is not up-to-date, run `python update_doc.py` in order to update it"
)
else:
with open(filename, "w") as f:
f.write(final_doc)
def check_supported_models(check: bool):
filename = "server/text_generation_server/models/__init__.py"
with open(filename, "r") as f:
tree = ast.parse(f.read())
enum_def = [
x for x in tree.body if isinstance(x, ast.ClassDef) and x.name == "ModelType"
][0]
_locals = {}
_globals = {}
exec(f"import enum\n{ast.unparse(enum_def)}", _globals, _locals)
ModelType = _locals["ModelType"]
list_string = ""
for data in ModelType:
list_string += f"- [{data.value['name']}]({data.value['url']})"
if data.value.get("multimodal", None):
list_string += " (Multimodal)"
list_string += "\n"
final_doc = TEMPLATE.replace("SUPPORTED_MODELS", list_string)
filename = "docs/source/supported_models.md"
if check:
with open(filename, "r") as f:
doc = f.read()
if doc != final_doc:
tmp = "supported.md"
with open(tmp, "w") as g:
g.write(final_doc)
diff = subprocess.run(
["diff", tmp, filename], capture_output=True
).stdout.decode("utf-8")
print(diff)
raise Exception(
"Supported models is not up-to-date, run `python update_doc.py` in order to update it"
)
else:
with open(filename, "w") as f:
f.write(final_doc)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--check", action="store_true")
args = parser.parse_args()
check_cli(args.check)
check_supported_models(args.check)
if __name__ == "__main__":
main()