-
Notifications
You must be signed in to change notification settings - Fork 3
/
ad03.yml
141 lines (141 loc) · 3.59 KB
/
ad03.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
train:
dev_directory: ./dev_data
feature:
frames: 5
hop_length: 512
n_fft: 1024
n_mels: 128
power: 2.0
downsample: True
fit:
batch_size: 512
compile:
loss: mean_squared_error
optimizer: adam
epochs: 100
shuffle: true
validation_split: 0.1
verbose: 1
max_fpr: 0.1
model:
input_dim: 128
batch_norm: true
latent_dim: 8
hidden_dim: 128
l1reg: 0
name: qkeras_model
encode_depth: 1
encode_in: 64
decode_depth: 1
decode_out: 64
quantization:
bits: 10
int_bits: 0
last_bits: 10
last_int_bits: 10
relu_bits: 5
relu_int_bits: 5
pruning:
constant: false
decay: false
final_step: None
initial_step: 0
power: None
sparsity: None
initial_sparsity: None
final_sparsity: None
model_directory: ./model/model_config/ad03
result_directory: ./result/test/model_config/ad03
result_file: result.csv
convert:
x_npy_plot_roc: test_data/anomaly_detection/downsampled_128_5_to_32_4_skip_method.npy
y_npy_plot_roc: test_data/anomaly_detection/downsampled_128_5_to_32_4_ground_truths_skip_method.npy
x_npy_hls_test_bench: ./test_data/anomaly_detection/test_bench/downsampled_128_5_to_32_4_skip_method.npy
y_npy_hls_test_bench: ./test_data/anomaly_detection/test_bench/downsampled_128_5_to_32_4_ground_truths_skip_method.npy
model_file: model/model_config/ad03/model_ToyCar.h5
Build: True
OutputDir: hls/results/config/ad03
ClockPeriod: 10
vivado_path: "/tools/Xilinx/Vivado/2019.1/bin:"
Board: pynq-z2
Trace: 0
fpga_part: xc7z020clg400-1
acc_name: anomaly_detection
Backend: VivadoAccelerator
IOType: io_stream
Interface: axi_stream
Driver: python
Strategy: Resource
HLSConfig:
LayerName:
batch_normalization:
Precision:
bias: ap_fixed<16,6>
scale: ap_fixed<16,6>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
batch_normalization_1:
Precision:
bias: ap_fixed<16,6>
scale: ap_fixed<16,6>
ReuseFactor: 4096
Trace: true
batch_normalization_2:
Precision:
bias: ap_fixed<16,6>
scale: ap_fixed<16,6>
ReuseFactor: 4096
Trace: true
input_1:
Precision: ap_fixed<8,8>
Trace: true
q_activation:
Precision:
result: ap_fixed<11,6>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
q_activation_1:
Precision:
result: ap_fixed<11,6>
ReuseFactor: 4096
Trace: true
q_activation_2:
Precision:
result: ap_fixed<11,6>
ReuseFactor: 4096
Trace: true
q_dense:
Precision:
bias: ap_fixed<11,1>
weight: ap_fixed<11,1>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
q_dense_1:
Precision:
bias: ap_fixed<11,1>
weight: ap_fixed<11,1>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
q_dense_2:
Precision:
bias: ap_fixed<11,1>
weight: ap_fixed<11,1>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
q_dense_3:
Precision:
bias: ap_fixed<11,11>
weight: ap_fixed<11,11>
ReuseFactor: 4096
Trace: true
accum_t: ap_fixed<32,16>
Model:
Precision: ap_fixed<32,16>
ReuseFactor: 4096
Strategy: Resource
FIFO_opt: False