Skip to content
/ rpb Public

Die Rheinland-Pfälzische Bibliographie

Notifications You must be signed in to change notification settings

hbz/rpb

Repository files navigation

RPB

https://service-wiki.hbz-nrw.de/pages/viewpage.action?pageId=712998955

Build

This repo contains the RPB data transformation and the RPB web application.

Setup

Install metafacture dependencies

See .github/workflows/build.yml.

Clone RPB project repo

git clone https://github.com/hbz/rpb.git
cd rpb

Deployment overview

The overall RPB system consists of 4 applications: RPB & BiblioVino (Java/Play, based on NWBib), RPPD (Java/Play, based on lobid-gnd), and Strapi-RPB (JavaScript/React).

Proxies and redirects

LBZ-URLs Lobid-URL Test-System
RPB https://rpb.lbz-rlp.de
http://www.rpb-rlp.de/
https://rpb.lobid.org http://test.rpb.lobid.org
BiblioVino https://wein.lbz-rlp.de/
http://weinbibliographie.de/
https://wein.lobid.org http://test.wein.lobid.org
RPPD http://www.rppd-rlp.de/ https://rppd.lobid.org http://test.rppd.lobid.org
Strapi -- https://rpb-cms.lobid.org/admin
https://rpb-cms.lobid.org/api/persons?populate=*
https://rpb-cms-test.lobid.org/admin
https://rpb-cms-test.lobid.org/api/persons?populate=*

For details on our setup see https://dienst-wiki.hbz-nrw.de/display/SEM/RPB (internal).

Source code

Transformation development

Create lookup table

sbt "runMain rpb.ETL conf/rpb-test-sw.flux"

This writes a .tsv file to output/, to be used for lookups in the transformation.

Run transformation to strapi data

sbt "runMain rpb.ETL conf/rpb-test-titel-to-strapi.flux"

This writes a single .json file to output/ (it's actually JSON lines, but the suffix makes it work with JSON tools, e.g. for syntax coloring and formatting).

Import strapi data

sbt "runMain rpb.ETL conf/rpb-test-titel-import.flux PICK=all_equal('type','u') PATH=articles"
sbt "runMain rpb.ETL conf/rpb-test-titel-import.flux PICK=all_equal('type','Monografie') PATH=independent-works"
sbt "runMain rpb.ETL conf/rpb-test-titel-import.flux PICK=all_equal('type','Band') PATH=independent-works"
sbt "runMain rpb.ETL conf/rpb-test-titel-import.flux PICK=all_equal('f36t','MultiVolumeBook') PATH=independent-works"

This attempts to import all data selected with the PICK variable to the API endpoint in PATH, and prints the server response.

To reimport existing entries, these may need to be deleted first, e.g. for articles/1 to articles/5:

curl --request DELETE http://localhost:1337/api/articles/[1-5]

After import they are available at e.g. https://rpb-cms-test.lobid.org/api/articles?populate=*

Entries using the same path can be filtered, e.g. to get only volumes (type=Band):

https://rpb-cms-test.lobid.org/api/independent-works?filters[type][$eq]=Band&populate=*

Import SKOS data into strapi

Actual transformation of SKOS TTL files to JSON happens in https://github.com/acka47/scripts/tree/master/skos2json.

To import the resulting JSON data into strapi, run:

sbt "runMain rpb.ETL conf/rpb-systematik-import.flux INPUT=rpb.ndjson PATH=rpb-notations"
sbt "runMain rpb.ETL conf/rpb-systematik-import.flux INPUT=rpb-spatial.ndjson PATH=rpb-spatials"

Run RPPD transformation to strapi data

sbt "runMain rpb.ETL conf/rppd-to-strapi.flux"

Writes output to output/output-rppd-strapi.ndjson.

Import RPPD strapi data

sbt "runMain rpb.ETL conf/rppd-import.flux"

This attempts to import RPPD data to strapi, and prints the server responses.

Same for RPB-Normdaten (rpb-sw-to-strapi.flux / rpb-sw-import.flux).

See also transformAndImportTest.sh (test data) and transformAndImportFull.sh (full data).

Run transformation to lobid data

sbt "runMain rpb.ETL conf/rpb-test-titel-to-lobid.flux"

This writes individual .json files for each record in the input data to output/.

Export strapi data

sbt "runMain rpb.ETL conf/test-export-strapi-to-lobid.flux"

This writes individual .json files for Strapi records to output/.

Compare export data

sbt "runMain rpb.ETL conf/test-export-compare-strapi.flux PICK=all_equal('type','u') PATH=articles"
sbt "runMain rpb.ETL conf/test-export-compare-strapi.flux PICK=all_equal('type','Monografie') PATH=independent-works"
sbt "runMain rpb.ETL conf/test-export-compare-strapi.flux PICK=all_equal('type','Band') PATH=independent-works"
sbt "runMain rpb.ETL conf/test-export-compare-strapi.flux PICK=all_equal('f36t','MultiVolumeBook') PATH=independent-works"

This selects parts of the test data and write two files:

  1. for each test record, get the data from the Strapi HTTP API, convert the result to the lobid format, write to test-lobid-output-from-strapi.json
  2. convert each record directly to lobid, write to test-lobid-output-from-file.json

We can then compare the two files (e.g. in VSC: Select for Compare, Format Document) to see differences. Since fields that are not defined in the Strapi content types are omitted upon import, missing data here points to missing fields in the Strapi content types.

Validate output

Prerequisites: npm install -g ajv-cli ajv-formats

sh validateJsonOutput.sh

This validates the resulting files against the JSON schemas in test/rpb/schemas/.

Adding test data

During development, you'll sometimes want to add a record with specific fields or values to the test data, e.g. when handling new fields or fixing edge cases in the transformation. Due to the unusual encoding of the input data (IBM437), editing the files in a text editor may result in a faulty encoding. Instead, we can use the command line and append to the test data directly with >>.

E.g. to add the last record in conf/RPB-Export_HBZ_Bio.txt that contains #82b to conf/RPB-Export_HBZ_Bio_Test.txt:

cat conf/RPB-Export_HBZ_Bio.txt | grep -a '#82b' | tail -n 1 >> conf/RPB-Export_HBZ_Bio_Test.txt

The -a is required to return all results since grep views parts of the files as binary data.

Index creation

If you're not indexing into an existing lobid-resources index, make sure to create one with the proper index settings, e.g. to index into Elasticsearch on localhost:

~/git/rpb$ curl -XPUT -H "Content-Type: application/json" localhost:9200/resources-rpb-20231130-1045?pretty -d @../lobid-resources-rpb/src/main/resources/alma/index-config.json

For testing, the real index name (e.g. resources-rpb-20231130-1045) is aliased by resources-rpb-test, which is used by http://test.rpb.lobid.org and in the transformation.

Run full transformation and indexing

sh transformAndIndex.sh

Web application

Start the web application:

sbt run

http://localhost:9000

Java development

Run tests

sbt "test-only tests.CITests"

Generate Eclipse project for import

sbt "eclipse with-source=true"

Reconciliation

NOTE: This section is based on the work-in-progress reconciliation service in lobid-resources.

RPB source data with hbz IDs

Goal: for all RPB entries with an hbz ID in #983, create a mapping from the hbz union catalog ID almaMmsId to the rpbId from #00 . With this, during the transformation of the hbz union catalog for lobid-resources, we can make sure that all entries are marked as members of RPB (containedIn, rpbId).

Create the subset we want to reconcile (all entries with #983):

sbt "runMain rpb.ETL conf/rpb-983.flux"

Create an OpenRefine project from the output file conf/output/rpb-983.json, selecting "Line-based text files" under "Parse data as". Optionally, limit the number of rows to import ("Load at most [ ] row(s) of data") for faster experimentation with reconciliation results.

In the "Undo / Redo" tab, click "Apply...", paste the content below, then click "Perform Operations".

[
  {
    "op": "core/column-rename",
    "oldColumnName": "Column 1",
    "newColumnName": "Allegro",
    "description": "Rename column Column 1 to Allegro"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Allegro",
    "expression": "grel:value.parseJson().get('#983')",
    "onError": "set-to-blank",
    "newColumnName": "983",
    "columnInsertIndex": 1,
    "description": "Create column 983 at index 1 based on column Allegro using expression grel:value.parseJson().get('#983')"
  },
  {
    "op": "core/recon",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "983",
    "config": {
      "mode": "standard-service",
      "service": "https://test.lobid.org/resources/reconcile",
      "identifierSpace": "https://test.lobid.org/resources",
      "schemaSpace": "http://purl.org/dc/terms/BibliographicResource",
      "type": {
        "id": "BibliographicResource",
        "name": "BibliographicResource"
      },
      "autoMatch": true,
      "columnDetails": [],
      "limit": 0
    },
    "description": "Reconcile cells in column 983 to type BibliographicResource"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "983",
    "expression": "cell.recon.match.id",
    "onError": "set-to-blank",
    "newColumnName": "almaMmsId",
    "columnInsertIndex": 2,
    "description": "Create column almaMmsId at index 2 based on column 983 using expression cell.recon.match.id"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Allegro",
    "expression": "grel:value.parseJson().get('#00 ')",
    "onError": "set-to-blank",
    "newColumnName": "rpbId",
    "columnInsertIndex": 1,
    "description": "Create column rpbId at index 1 based on column Allegro using expression grel:value.parseJson().get('#00 ')"
  },
  {
    "op": "core/column-move",
    "columnName": "rpbId",
    "index": 3,
    "description": "Move column rpbId to position 3"
  }
]

This reconciles the hbz IDs from #983 with lobid-resources to add a column almaMmsId, as well as a column rpbId from #00 . We can now filter on the matched entries, remove the original data column and the hbz ID column, and export the remaining almaMmsId and rpbId columns as tab-separated values to be used for lookups in the lobid-resources transformation.

We currently have two output files for this workflow (in conf/maps/): almaMmsId-to-rpbId.tsv, the actual goal mapping, and hbzIds-missing-in-alma.tsv, a mapping of values in #983 that were not reconciled (some look like proper hbz IDs that seem to be missing in Alma, some look like cataloging errors) to rpbId from #00 .

RPB #36 =sm data w/o hbz IDs

Create the subset we want to reconcile (entries with #36 =sm and no hbz ID in #983):

sbt "runMain rpb.ETL conf/rpb-36sm.flux"

Create an OpenRefine project from the output file conf/output/rpb-36sm.json, selecting "Line-based text files" under "Parse data as". Optionally, limit the number of rows to import ("Load at most [ ] row(s) of data") for faster experimentation with reconciliation results.

In the "Undo / Redo" tab, click "Apply...", paste the content below, then click "Perform Operations".

[
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#20 ')",
    "onError": "set-to-blank",
    "newColumnName": "20",
    "columnInsertIndex": 0,
    "description": "Create column 20 at index 0 based on column Column 1 using expression grel:value.parseJson().get('#20 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#19 ')",
    "onError": "set-to-blank",
    "newColumnName": "19",
    "columnInsertIndex": 1,
    "description": "Create column 19 at index 1 based on column Column 1 using expression grel:value.parseJson().get('#19 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#60 ')",
    "onError": "set-to-blank",
    "newColumnName": "60",
    "columnInsertIndex": 2,
    "description": "Create column 60 at index 2 based on column Column 1 using expression grel:value.parseJson().get('#60 ')"
  },
  {
    "op": "core/text-transform",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "60",
    "expression": "grel:replace(value, '_', '')",
    "onError": "keep-original",
    "repeat": false,
    "repeatCount": 10,
    "description": "Text transform on cells in column 60 using expression grel:replace(value, '_', '')"
  },
  {
    "op": "core/text-transform",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "60",
    "expression": "grel:replace(value, 'n', '-')",
    "onError": "keep-original",
    "repeat": false,
    "repeatCount": 10,
    "description": "Text transform on cells in column 60 using expression grel:replace(value, 'n', '-')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#39 ')",
    "onError": "set-to-blank",
    "newColumnName": "39",
    "columnInsertIndex": 3,
    "description": "Create column 39 at index 3 based on column Column 1 using expression grel:value.parseJson().get('#39 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#76b')",
    "onError": "set-to-blank",
    "newColumnName": "76b",
    "columnInsertIndex": 4,
    "description": "Create column 76b at index 4 based on column Column 1 using expression grel:value.parseJson().get('#76b')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#74 ')",
    "onError": "set-to-blank",
    "newColumnName": "74",
    "columnInsertIndex": 5,
    "description": "Create column 74 at index 5 based on column Column 1 using expression grel:value.parseJson().get('#74 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#75 ')",
    "onError": "set-to-blank",
    "newColumnName": "75",
    "columnInsertIndex": 6,
    "description": "Create column 75 at index 6 based on column Column 1 using expression grel:value.parseJson().get('#75 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:\"http://www.rpb-rlp.de/\" + value.parseJson().get('#00 ')",
    "onError": "set-to-blank",
    "newColumnName": "rpbUrl",
    "columnInsertIndex": 0,
    "description": "Create column rpbUrl at index 0 based on column Column 1 using expression grel:\"http://www.rpb-rlp.de/\" + value.parseJson().get('#00 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "20",
    "expression": "grel:value",
    "onError": "set-to-blank",
    "newColumnName": "20-original",
    "columnInsertIndex": 2,
    "description": "Create column 20-original at index 2 based on column 20 using expression grel:value"
  },
  {
    "op": "core/column-rename",
    "oldColumnName": "20",
    "newColumnName": "lobidMatch",
    "description": "Rename column 20 to lobidMatch"
  },
  {
    "op": "core/recon",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "lobidMatch",
    "config": {
      "mode": "standard-service",
      "service": "http://test.lobid.org/resources/reconcile",
      "identifierSpace": "http://test.lobid.org/resources",
      "schemaSpace": "http://purl.org/dc/terms/BibliographicResource",
      "type": {
        "id": "(Series OR Journal OR EditedVolume OR MultiVolumeBook OR Periodical OR Bibliography) AND NOT (Article OR PublicationIssue)",
        "name": "Überordnungen"
      },
      "autoMatch": true,
      "columnDetails": [
        {
          "column": "19",
          "propertyName": "Ansetzungssachtitel",
          "propertyID": "alternativeTitle"
        },
        {
          "column": "60",
          "propertyName": "HE Urheber",
          "propertyID": "contribution.agent.gndIdentifier"
        },
        {
          "column": "39",
          "propertyName": "Verfasserangabe",
          "propertyID": "contribution.agent.label"
        },
        {
          "column": "76b",
          "propertyName": "Erscheinungsjahr",
          "propertyID": "publication.startDate"
        },
        {
          "column": "76b",
          "propertyName": "Erscheinungsverlauf",
          "propertyID": "publication.publicationHistory"
        },
        {
          "column": "74",
          "propertyName": "Verlagsort",
          "propertyID": "publication.location"
        },
        {
          "column": "75",
          "propertyName": "Verlag",
          "propertyID": "publication.publishedBy"
        }
      ],
      "limit": 0
    },
    "description": "Reconcile cells in column lobidMatch to type Überordnungen"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "lobidMatch",
    "expression": "cell.recon.match.id",
    "onError": "set-to-blank",
    "newColumnName": "almaMmsId",
    "columnInsertIndex": 2,
    "description": "Create column almaMmsId at index 2 based on column lobidMatch using expression cell.recon.match.id"
  }
]

The resulting matches can be exported (for comparing reconciliation with different settings etc.): Export -> Templating..., Row template: {{cells["almaMmsId"].value}}.

You should now have a project with 8138 rows, each with 8 columns: data from fields #20 , #19 , #60 , #39 , #76b, #74 , #75 and the full JSON record. Based on that, we reconciled the 20 column, now renamed to lobidMatch, including data from columns 19, 60, 39, 76b, 74, and 75. We can now check the matched / unmatched entries in the Facet / Filter tab (to restore the facet, select the lobidMatch column > Reconcile > Facets > By judgement).

After we're done with any manual matching, we can prepare the data for the resulting mapping of almaMmsId to rpbId:

[
  {
    "op": "core/column-removal",
    "columnName": "almaMmsId",
    "description": "Remove column almaMmsId"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "record-based"
    },
    "baseColumnName": "lobidMatch",
    "expression": "cell.recon.match.id",
    "onError": "set-to-blank",
    "newColumnName": "almaMmsId",
    "columnInsertIndex": 2,
    "description": "Create column almaMmsId at index 2 based on column lobidMatch using expression cell.recon.match.id"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [
        {
          "type": "list",
          "name": "almaMmsId",
          "expression": "isBlank(value)",
          "columnName": "almaMmsId",
          "invert": false,
          "omitBlank": false,
          "omitError": false,
          "selection": [
            {
              "v": {
                "v": false,
                "l": "false"
              }
            }
          ],
          "selectBlank": false,
          "selectError": false
        }
      ],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:\"RPB\" + value.parseJson().get(\"#00 \")",
    "onError": "set-to-blank",
    "newColumnName": "rpbId",
    "columnInsertIndex": 3,
    "description": "Create column rpbId at index 3 based on column Column 1 using expression grel:\"RPB\" + value.parseJson().get(\"#00 \")"
  }
]

The final result can then be exported (Export -> Custom tabular exporter) to a *.tsv file with two columns mapping almaMmsId to rpbId, to be used in the union catalog transformation to add the rpbId value for each almaMmsId.

RPB #36 =s data w/o hbz IDs

NOTE: This section is work in progress, see RPB-51.

Create the subset we want to reconcile (entries with #36 =s and no hbz ID in #983):

sbt "runMain rpb.ETL conf/rpb-36s.flux"

Create an OpenRefine project from the output file conf/output/rpb-36s.json, selecting "Line-based text files" under "Parse data as". Since the full data is relatively large, limit the number of rows to import ("Load at most [ ] row(s) of data") for faster experimentation with reconciliation results.

In the "Undo / Redo" tab, click "Apply...", paste the content below, then click "Perform Operations".

[
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#20 ')",
    "onError": "set-to-blank",
    "newColumnName": "20",
    "columnInsertIndex": 0,
    "description": "Create column 20 at index 0 based on column Column 1 using expression grel:value.parseJson().get('#20 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#19 ')",
    "onError": "set-to-blank",
    "newColumnName": "19",
    "columnInsertIndex": 1,
    "description": "Create column 19 at index 1 based on column Column 1 using expression grel:value.parseJson().get('#19 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#60 ')",
    "onError": "set-to-blank",
    "newColumnName": "60",
    "columnInsertIndex": 2,
    "description": "Create column 60 at index 2 based on column Column 1 using expression grel:value.parseJson().get('#60 ')"
  },
  {
    "op": "core/text-transform",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "60",
    "expression": "grel:replace(value, '_', '')",
    "onError": "keep-original",
    "repeat": false,
    "repeatCount": 10,
    "description": "Text transform on cells in column 60 using expression grel:replace(value, '_', '')"
  },
  {
    "op": "core/text-transform",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "60",
    "expression": "grel:replace(value, 'n', '-')",
    "onError": "keep-original",
    "repeat": false,
    "repeatCount": 10,
    "description": "Text transform on cells in column 60 using expression grel:replace(value, 'n', '-')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#39 ')",
    "onError": "set-to-blank",
    "newColumnName": "39",
    "columnInsertIndex": 3,
    "description": "Create column 39 at index 3 based on column Column 1 using expression grel:value.parseJson().get('#39 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#76b')",
    "onError": "set-to-blank",
    "newColumnName": "76b",
    "columnInsertIndex": 4,
    "description": "Create column 76b at index 4 based on column Column 1 using expression grel:value.parseJson().get('#76b')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#74 ')",
    "onError": "set-to-blank",
    "newColumnName": "74",
    "columnInsertIndex": 5,
    "description": "Create column 74 at index 5 based on column Column 1 using expression grel:value.parseJson().get('#74 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#75 ')",
    "onError": "set-to-blank",
    "newColumnName": "75",
    "columnInsertIndex": 6,
    "description": "Create column 75 at index 6 based on column Column 1 using expression grel:value.parseJson().get('#75 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#27 ')",
    "onError": "set-to-blank",
    "newColumnName": "27",
    "columnInsertIndex": 7,
    "description": "Create column 27 at index 7 based on column Column 1 using expression grel:value.parseJson().get('#27 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:value.parseJson().get('#85 ')",
    "onError": "set-to-blank",
    "newColumnName": "85",
    "columnInsertIndex": 8,
    "description": "Create column 85 at index 8 based on column Column 1 using expression grel:value.parseJson().get('#85 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "Column 1",
    "expression": "grel:\"http://www.rpb-rlp.de/\" + value.parseJson().get('#00 ')",
    "onError": "set-to-blank",
    "newColumnName": "rpbUrl",
    "columnInsertIndex": 0,
    "description": "Create column rpbUrl at index 0 based on column Column 1 using expression grel:\"http://www.rpb-rlp.de/\" + value.parseJson().get('#00 ')"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "20",
    "expression": "grel:value",
    "onError": "set-to-blank",
    "newColumnName": "20-original",
    "columnInsertIndex": 2,
    "description": "Create column 20-original at index 2 based on column 20 using expression grel:value"
  },
  {
    "op": "core/column-rename",
    "oldColumnName": "20",
    "newColumnName": "lobidMatch",
    "description": "Rename column 20 to lobidMatch"
  },
  {
    "op": "core/text-transform",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "lobidMatch",
    "expression": "grel:if(cells[\"27\"].value == null, value, cells[\"27\"].value + \" \" + value)",
    "onError": "keep-original",
    "repeat": false,
    "repeatCount": 10,
    "description": "Text transform on cells in column lobidMatch using expression grel:if(cells[\"27\"].value == null, value, cells[\"27\"].value + \" \" + value)"
  },
  {
    "op": "core/recon",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "columnName": "lobidMatch",
    "config": {
      "mode": "standard-service",
      "service": "http://test.lobid.org/resources/reconcile",
      "identifierSpace": "http://test.lobid.org/resources",
      "schemaSpace": "http://purl.org/dc/terms/BibliographicResource",
      "type": {
        "id": "Book AND NOT (Series OR Journal OR EditedVolume OR MultiVolumeBook OR Periodical OR Bibliography OR Article OR PublicationIssue)",
        "name": "Monographie"
      },
      "autoMatch": true,
      "columnDetails": [
        {
          "column": "19",
          "propertyName": "Ansetzungssachtitel",
          "propertyID": "alternativeTitle"
        },
        {
          "column": "60",
          "propertyName": "HE Urheber",
          "propertyID": "contribution.agent.gndIdentifier"
        },
        {
          "column": "39",
          "propertyName": "Verfasserangabe",
          "propertyID": "contribution.agent.label"
        },
        {
          "column": "76b",
          "propertyName": "Erscheinungsjahr",
          "propertyID": "publication.startDate"
        },
        {
          "column": "76b",
          "propertyName": "Erscheinungsverlauf",
          "propertyID": "publication.publicationHistory"
        },
        {
          "column": "74",
          "propertyName": "Verlagsort",
          "propertyID": "publication.location"
        },
        {
          "column": "75",
          "propertyName": "Verlag",
          "propertyID": "publication.publishedBy"
        },
        {
          "column": "85",
          "propertyName": "Serie",
          "propertyID": "_all"
        }
      ],
      "limit": 0
    },
    "description": "Reconcile cells in column lobidMatch to type Monographie"
  },
  {
    "op": "core/column-addition",
    "engineConfig": {
      "facets": [],
      "mode": "row-based"
    },
    "baseColumnName": "lobidMatch",
    "expression": "cell.recon.match.id",
    "onError": "set-to-blank",
    "newColumnName": "almaMmsId",
    "columnInsertIndex": 2,
    "description": "Create column almaMmsId at index 2 based on column lobidMatch using expression cell.recon.match.id"
  }
]

The resulting matches can be exported (for comparing reconciliation with different settings etc.): Export -> Templating..., Row template: {{cells["almaMmsId"].value}}.