We recommend to setup the datasets in $LANEATT_ROOT/datasets
(it can be a symlink), where $LANEATT_ROOT
is the code's root directory. All the configs provided in this repository expect the datasets to be in this path and changing it will require you to update the configs accordingly.
How to set up
Inside the code's root directory, run the following:
mkdir datasets # if it does not already exists
cd datasets
# train & validation data (~10 GB)
mkdir tusimple
wget "https://s3.us-east-2.amazonaws.com/benchmark-frontend/datasets/1/train_set.zip"
unzip train_set.zip -d tusimple
# test images (~10 GB)
mkdir tusimple-test
wget "https://s3.us-east-2.amazonaws.com/benchmark-frontend/datasets/1/test_set.zip"
unzip test_set.zip -d tusimple-test
# test annotations
wget "https://s3.us-east-2.amazonaws.com/benchmark-frontend/truth/1/test_label.json" -P tusimple-test/
cd ..
How to set up
Inside the code's root directory, run the following:
mkdir datasets # if it does not already exists
cd datasets
mkdir culane
# train & validation images (~30 GB)
gdown "https://drive.google.com/uc?id=1AQjQZwOAkeBTSG_1I9fYn8KBcxBBbYyk"
gdown "https://drive.google.com/uc?id=1PH7UdmtZOK3Qi3SBqtYOkWSH2dpbfmkL"
gdown "https://drive.google.com/uc?id=14Gi1AXbgkqvSysuoLyq1CsjFSypvoLVL"
tar xf driver_23_30frame.tar.gz
tar xf driver_161_90frame.tar.gz
tar xf driver_182_30frame.tar.gz
# test images (~10 GB)
gdown "https://drive.google.com/uc?id=1LTdUXzUWcnHuEEAiMoG42oAGuJggPQs8"
gdown "https://drive.google.com/uc?id=1daWl7XVzH06GwcZtF4WD8Xpvci5SZiUV"
gdown "https://drive.google.com/uc?id=1Z6a463FQ3pfP54HMwF3QS5h9p2Ch3An7"
tar xf driver_37_30frame.tar.gz
tar xf driver_100_30frame.tar.gz
tar xf driver_193_90frame.tar.gzt
# all annotations (train, val and test)
gdown "https://drive.google.com/uc?id=1QbB1TOk9Fy6Sk0CoOsR3V8R56_eG6Xnu"
tar xf annotations_new.tar.gz
gdown "https://drive.google.com/uc?id=18alVEPAMBA9Hpr3RDAAchqSj5IxZNRKd"
tar xf list.tar.gz
An account in the website is required to download the dataset.
How to set up
- Download the set of color images (
color_images.zip
, 108 GB) - Download the annotations (
labels.zip
, 650 MB) - Unzip both files (
color_images.zip
andlabels.zip
) into the same directory (e.g.,datasets/llamas/
), which will be the dataset's root. This should result in a directory structure like that:
llamas
├── color_images
│ ├── test
│ ├── train
│ └── valid
└── labels
├── train
└── valid