-
Notifications
You must be signed in to change notification settings - Fork 118
/
public_tests.py
275 lines (223 loc) · 10.8 KB
/
public_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
from outputs import *
def zero_pad_test(target):
# Test 1
np.random.seed(1)
x = np.random.randn(4, 3, 3, 2)
x_pad = target(x, 3)
print ("x.shape =\n", x.shape)
print ("x_pad.shape =\n", x_pad.shape)
print ("x[1,1] =\n", x[1, 1])
print ("x_pad[1,1] =\n", x_pad[1, 1])
assert type(x_pad) == np.ndarray, "Output must be a np array"
assert x_pad.shape == (4, 9, 9, 2), f"Wrong shape: {x_pad.shape} != (4, 9, 9, 2)"
print(x_pad[0, 0:2,:, 0])
assert np.allclose(x_pad[0, 0:2,:, 0], [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], 1e-15), "Rows are not padded with zeros"
assert np.allclose(x_pad[0, :, 7:9, 1].transpose(), [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], 1e-15), "Columns are not padded with zeros"
assert np.allclose(x_pad[:, 3:6, 3:6, :], x, 1e-15), "Internal values are different"
# Test 2
np.random.seed(1)
x = np.random.randn(5, 4, 4, 3)
pad = 2
x_pad = target(x, pad)
assert type(x_pad) == np.ndarray, "Output must be a np array"
assert x_pad.shape == (5, 4 + 2 * pad, 4 + 2 * pad, 3), f"Wrong shape: {x_pad.shape} != {(5, 4 + 2 * pad, 4 + 2 * pad, 3)}"
assert np.allclose(x_pad[0, 0:2,:, 0], [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], 1e-15), "Rows are not padded with zeros"
assert np.allclose(x_pad[0, :, 6:8, 1].transpose(), [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], 1e-15), "Columns are not padded with zeros"
assert np.allclose(x_pad[:, 2:6, 2:6, :], x, 1e-15), "Internal values are different"
print("\033[92mAll tests passed!")
def conv_single_step_test(target):
np.random.seed(3)
a_slice_prev = np.random.randn(5, 5, 3)
W = np.random.randn(5, 5, 3)
b = np.random.randn(1, 1, 1)
Z = target(a_slice_prev, W, b)
expected_output = np.float64(-3.5443670581382474)
assert (type(Z) == np.float64 or type(Z) == np.float32), "You must cast the output to float"
assert np.isclose(Z, expected_output), f"Wrong value. Expected: {expected_output} got: {Z}"
print("\033[92mAll tests passed!")
def conv_forward_test_1(z_mean, z_0_2_1, cache_0_1_2_3):
test_count = 0
z_mean_expected = 0.5511276474566768
z_0_2_1_expected = [-2.17796037, 8.07171329, -0.5772704, 3.36286738, 4.48113645, -2.89198428, 10.99288867, 3.03171932]
cache_0_1_2_3_expected = [-1.1191154, 1.9560789, -0.3264995, -1.34267579]
if np.isclose(z_mean, z_mean_expected):
test_count = test_count + 1
else:
print("\033[91mFirst Test: Z's mean is incorrect. Expected:", z_mean_expected, "\nYour output:", z_mean, "\033[90m\n")
if np.allclose(z_0_2_1, z_0_2_1_expected):
test_count = test_count + 1
else:
print("\033[91mFirst Test: Z[0,2,1] is incorrect. Expected:", z_0_2_1_expected, "\nYour output:", z_0_2_1, "\033[90m\n")
if np.allclose(cache_0_1_2_3, cache_0_1_2_3_expected):
test_count = test_count + 1
else:
print("\033[91mFirst Test: cache_conv[0][1][2][3] is incorrect. Expected:", cache_0_1_2_3_expected, "\nYour output:",
cache_0_1_2_3, "\033[90m")
if test_count == 3:
print("\033[92mFirst Test: All tests passed!")
def conv_forward_test_2(target):
# Test 1
np.random.seed(3)
A_prev = np.random.randn(2, 5, 7, 4)
W = np.random.randn(3, 3, 4, 8)
b = np.random.randn(1, 1, 1, 8)
Z, cache_conv = target(A_prev, W, b, {"pad" : 3, "stride": 1})
Z_shape = Z.shape
assert Z_shape[0] == A_prev.shape[0], f"m is wrong. Current: {Z_shape[0]}. Expected: {A_prev.shape[0]}"
assert Z_shape[1] == 9, f"n_H is wrong. Current: {Z_shape[1]}. Expected: 9"
assert Z_shape[2] == 11, f"n_W is wrong. Current: {Z_shape[2]}. Expected: 11"
assert Z_shape[3] == W.shape[3], f"n_C is wrong. Current: {Z_shape[3]}. Expected: {W.shape[3]}"
# Test 2
Z, cache_conv = target(A_prev, W, b, {"pad" : 0, "stride": 2})
assert(Z.shape == (2, 2, 3, 8)), "Wrong shape. Don't hard code the pad and stride values in the function"
# Test 3
W = np.random.randn(5, 5, 4, 8)
b = np.random.randn(1, 1, 1, 8)
Z, cache_conv = target(A_prev, W, b, {"pad" : 6, "stride": 1})
Z_shape = Z.shape
assert Z_shape[0] == A_prev.shape[0], f"m is wrong. Current: {Z_shape[0]}. Expected: {A_prev.shape[0]}"
assert Z_shape[1] == 13, f"n_H is wrong. Current: {Z_shape[1]}. Expected: 13"
assert Z_shape[2] == 15, f"n_W is wrong. Current: {Z_shape[2]}. Expected: 15"
assert Z_shape[3] == W.shape[3], f"n_C is wrong. Current: {Z_shape[3]}. Expected: {W.shape[3]}"
Z_means = np.mean(Z)
expected_Z = -0.5384027772160062
expected_conv = np.array([[ 1.98848968, 1.19505834, -0.0952376, -0.52718778],
[-0.32158469, 0.15113037, -0.01862772, 0.48352879],
[ 0.76896516, 1.36624284, 1.14726479, -0.11022916],
[ 0.38825041, -0.38712718, -0.58722031, 1.91082685],
[-0.45984615, 1.99073781, -0.34903539, 0.25282509],
[ 1.08940955, 0.02392202, 0.39312528, -0.2413848 ],
[-0.47552486, -0.16577702, -0.64971742, 1.63138295]])
assert np.isclose(Z_means, expected_Z), f"Wrong Z mean. Expected: {expected_Z} got: {Z_means}"
assert np.allclose(cache_conv[0][1, 2], expected_conv), f"Values in Z are wrong"
print("\033[92mSecond Test: All tests passed!")
def pool_forward_test(target):
# Test 1
A_prev = np.random.randn(2, 5, 7, 3)
A, cache = target(A_prev, {"stride" : 2, "f": 2}, mode = "average")
A_shape = A.shape
assert A_shape[0] == A_prev.shape[0], f"Test 1 - m is wrong. Current: {A_shape[0]}. Expected: {A_prev.shape[0]}"
assert A_shape[1] == 2, f"Test 1 - n_H is wrong. Current: {A_shape[1]}. Expected: 2"
assert A_shape[2] == 3, f"Test 1 - n_W is wrong. Current: {A_shape[2]}. Expected: 3"
assert A_shape[3] == A_prev.shape[3], f"Test 1 - n_C is wrong. Current: {A_shape[3]}. Expected: {A_prev.shape[3]}"
# Test 2
A_prev = np.random.randn(4, 5, 7, 4)
A, cache = target(A_prev, {"stride" : 1, "f": 5}, mode = "max")
A_shape = A.shape
assert A_shape[0] == A_prev.shape[0], f"Test 2 - m is wrong. Current: {A_shape[0]}. Expected: {A_prev.shape[0]}"
assert A_shape[1] == 1, f"Test 2 - n_H is wrong. Current: {A_shape[1]}. Expected: 1"
assert A_shape[2] == 3, f"Test 2 - n_W is wrong. Current: {A_shape[2]}. Expected: 3"
assert A_shape[3] == A_prev.shape[3], f"Test 2 - n_C is wrong. Current: {A_shape[3]}. Expected: {A_prev.shape[3]}"
# Test 3
np.random.seed(1)
A_prev = np.random.randn(2, 5, 5, 3)
A, cache = target(A_prev, {"stride" : 1, "f": 2}, mode = "max")
assert np.allclose(A[1, 1], np.array([[1.19891788, 0.74055645, 0.07734007],
[0.31515939, 0.84616065, 0.07734007],
[0.69803203, 0.84616065, 1.2245077 ],
[0.69803203, 1.12141771, 1.2245077 ]])), "Wrong value for A[1, 1]"
assert np.allclose(cache[0][1, 2], np.array([[ 0.16938243, 0.74055645, -0.9537006 ],
[-0.26621851, 0.03261455, -1.37311732],
[ 0.31515939, 0.84616065, -0.85951594],
[ 0.35054598, -1.31228341, -0.03869551],
[-1.61577235, 1.12141771, 0.40890054]])), "Wrong value for cache"
A, cache = target(A_prev, {"stride" : 1, "f": 2}, mode = "average")
assert np.allclose(A[1, 1], np.array([[ 0.11583785, 0.34545544, -0.6561907 ],
[-0.2334108, 0.3364666, -0.69382351],
[ 0.25497093, -0.21741362, -0.07342615],
[-0.04092568, -0.01110394, 0.12495022]])), "Wrong value for A[1, 1]"
print("\033[92mAll tests passed!")
######################################
############## UNGRADED ##############
######################################
def conv_backward_test(target):
test_cases = [
{
"name": "datatype_check",
"input": [parameters, cache, X, Y],
"expected": expected_output,
"error":"The function should return a numpy array."
},
{
"name": "shape_check",
"input": [parameters, cache, X, Y],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [parameters, cache, X, Y],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
def create_mask_from_window_test(target):
test_cases = [
{
"name": "datatype_check",
"input": [parameters, grads],
"expected": expected_output,
"error":"Data type mismatch"
},
{
"name": "shape_check",
"input": [parameters, grads],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [parameters, grads],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
def distribute_value_test(target):
test_cases = [
{
"name": "datatype_check",
"input": [X, Y, n_h],
"expected": expected_output,
"error":"Data type mismatch"
},
{
"name": "shape_check",
"input": [X, Y, n_h],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [X, Y, n_h],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
def pool_backward_test(target):
test_cases = [
{
"name": "datatype_check",
"input": [parameters, X],
"expected": expected_output,
"error":"Data type mismatch"
},
{
"name": "shape_check",
"input": [parameters, X],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [parameters, X],
"expected": expected_output,
"error": "Wrong output"
}
]
single_test(test_cases, target)