You are given a 0-indexed integer array piles
, where piles[i]
represents the number of stones in the ith
pile, and an integer k
. You should apply the following operation exactly k
times:
- Choose any
piles[i]
and removefloor(piles[i] / 2)
stones from it.
Notice that you can apply the operation on the same pile more than once.
Return the minimum possible total number of stones remaining after applying the k
operations.
floor(x)
is the greatest integer that is smaller than or equal to x
(i.e., rounds x
down).
Input: piles = [5,4,9], k = 2 Output: 12 Explanation: Steps of a possible scenario are: - Apply the operation on pile 2. The resulting piles are [5,4,5]. - Apply the operation on pile 0. The resulting piles are [3,4,5]. The total number of stones in [3,4,5] is 12.
Input: piles = [4,3,6,7], k = 3 Output: 12 Explanation: Steps of a possible scenario are: - Apply the operation on pile 2. The resulting piles are [4,3,3,7]. - Apply the operation on pile 3. The resulting piles are [4,3,3,4]. - Apply the operation on pile 0. The resulting piles are [2,3,3,4]. The total number of stones in [2,3,3,4] is 12.
1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105
use std::collections::BinaryHeap;
impl Solution {
pub fn min_stone_sum(piles: Vec<i32>, k: i32) -> i32 {
let mut piles = BinaryHeap::from(piles);
for _ in 0..k {
let x = piles.pop().unwrap();
piles.push((x + 1) / 2);
}
piles.into_iter().sum()
}
}