You are given a sorted array nums
of n
non-negative integers and an integer maximumBit
. You want to perform the following query n
times:
- Find a non-negative integer
k < 2maximumBit
such thatnums[0] XOR nums[1] XOR ... XOR nums[nums.length-1] XOR k
is maximized.k
is the answer to theith
query. - Remove the last element from the current array
nums
.
Return an array answer
, where answer[i]
is the answer to the ith
query.
Input: nums = [0,1,1,3], maximumBit = 2 Output: [0,3,2,3] Explanation: The queries are answered as follows: 1st query: nums = [0,1,1,3], k = 0 since 0 XOR 1 XOR 1 XOR 3 XOR 0 = 3. 2nd query: nums = [0,1,1], k = 3 since 0 XOR 1 XOR 1 XOR 3 = 3. 3rd query: nums = [0,1], k = 2 since 0 XOR 1 XOR 2 = 3. 4th query: nums = [0], k = 3 since 0 XOR 3 = 3.
Input: nums = [2,3,4,7], maximumBit = 3 Output: [5,2,6,5] Explanation: The queries are answered as follows: 1st query: nums = [2,3,4,7], k = 5 since 2 XOR 3 XOR 4 XOR 7 XOR 5 = 7. 2nd query: nums = [2,3,4], k = 2 since 2 XOR 3 XOR 4 XOR 2 = 7. 3rd query: nums = [2,3], k = 6 since 2 XOR 3 XOR 6 = 7. 4th query: nums = [2], k = 5 since 2 XOR 5 = 7.
Input: nums = [0,1,2,2,5,7], maximumBit = 3 Output: [4,3,6,4,6,7]
nums.length == n
1 <= n <= 105
1 <= maximumBit <= 20
0 <= nums[i] < 2maximumBit
nums
is sorted in ascending order.
impl Solution {
pub fn get_maximum_xor(nums: Vec<i32>, maximum_bit: i32) -> Vec<i32> {
let mut xor = nums.iter().fold(0, |acc, x| acc ^ x);
let mut answer = vec![(1 << maximum_bit) - 1; nums.len()];
for i in 0..nums.len() {
answer[i] ^= xor;
xor ^= nums[nums.len() - 1 - i];
}
answer
}
}