Skip to content

Latest commit

 

History

History
50 lines (41 loc) · 1.45 KB

File metadata and controls

50 lines (41 loc) · 1.45 KB

1785. Minimum Elements to Add to Form a Given Sum

You are given an integer array nums and two integers limit and goal. The array nums has an interesting property that abs(nums[i]) <= limit.

Return the minimum number of elements you need to add to make the sum of the array equal to goal. The array must maintain its property that abs(nums[i]) <= limit.

Note that abs(x) equals x if x >= 0, and -x otherwise.

Example 1:

Input: nums = [1,-1,1], limit = 3, goal = -4
Output: 2
Explanation: You can add -2 and -3, then the sum of the array will be 1 - 1 + 1 - 2 - 3 = -4.

Example 2:

Input: nums = [1,-10,9,1], limit = 100, goal = 0
Output: 1

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= limit <= 106
  • -limit <= nums[i] <= limit
  • -109 <= goal <= 109

Solutions (Ruby)

1. Greedy

# @param {Integer[]} nums
# @param {Integer} limit
# @param {Integer} goal
# @return {Integer}
def min_elements(nums, limit, goal)
  ((nums.sum - goal).abs * 1.0 / limit).ceil
end

Solutions (Rust)

1. Greedy

impl Solution {
    pub fn min_elements(nums: Vec<i32>, limit: i32, goal: i32) -> i32 {
        ((nums.iter().map(|&x| x as i64).sum::<i64>() - goal as i64).abs() as f64 / limit as f64)
            .ceil() as i32
    }
}