You would like to make dessert and are preparing to buy the ingredients. You have n
ice cream base flavors and m
types of toppings to choose from. You must follow these rules when making your dessert:
- There must be exactly one ice cream base.
- You can add one or more types of topping or have no toppings at all.
- There are at most two of each type of topping.
You are given three inputs:
baseCosts
, an integer array of lengthn
, where eachbaseCosts[i]
represents the price of theith
ice cream base flavor.toppingCosts
, an integer array of lengthm
, where eachtoppingCosts[i]
is the price of one of theith
topping.target
, an integer representing your target price for dessert.
You want to make a dessert with a total cost as close to target
as possible.
Return the closest possible cost of the dessert to target
. If there are multiple, return the lower one.
Input: baseCosts = [1,7], toppingCosts = [3,4], target = 10 Output: 10 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 7 - Take 1 of topping 0: cost 1 x 3 = 3 - Take 0 of topping 1: cost 0 x 4 = 0 Total: 7 + 3 + 0 = 10.
Input: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18 Output: 17 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 3 - Take 1 of topping 0: cost 1 x 4 = 4 - Take 2 of topping 1: cost 2 x 5 = 10 - Take 0 of topping 2: cost 0 x 100 = 0 Total: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18.
Input: baseCosts = [3,10], toppingCosts = [2,5], target = 9 Output: 8 Explanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost.
n == baseCosts.length
m == toppingCosts.length
1 <= n, m <= 10
1 <= baseCosts[i], toppingCosts[i] <= 104
1 <= target <= 104
use std::collections::HashSet;
impl Solution {
pub fn closest_cost(base_costs: Vec<i32>, topping_costs: Vec<i32>, target: i32) -> i32 {
let mut costs = HashSet::from([0]);
let mut ret = i32::MAX;
for &topping in &topping_costs {
for &cost in costs.clone().iter() {
costs.insert(cost + topping);
costs.insert(cost + topping + topping);
}
}
for &cost in costs.iter() {
for i in 0..base_costs.len() {
let x = cost + base_costs[i];
if (x - target).abs() < (ret - target).abs() {
ret = x;
} else if (x - target).abs() == (ret - target).abs() {
ret = ret.min(x);
}
}
}
ret
}
}