Skip to content

Latest commit

 

History

History
66 lines (53 loc) · 2.34 KB

File metadata and controls

66 lines (53 loc) · 2.34 KB

1760. Minimum Limit of Balls in a Bag

You are given an integer array nums where the ith bag contains nums[i] balls. You are also given an integer maxOperations.

You can perform the following operation at most maxOperations times:

  • Take any bag of balls and divide it into two new bags with a positive number of balls.
    • For example, a bag of 5 balls can become two new bags of 1 and 4 balls, or two new bags of 2 and 3 balls.

Your penalty is the maximum number of balls in a bag. You want to minimize your penalty after the operations.

Return the minimum possible penalty after performing the operations.

Example 1:

Input: nums = [9], maxOperations = 2
Output: 3
Explanation:
- Divide the bag with 9 balls into two bags of sizes 6 and 3. [9] -> [6,3].
- Divide the bag with 6 balls into two bags of sizes 3 and 3. [6,3] -> [3,3,3].
The bag with the most number of balls has 3 balls, so your penalty is 3 and you should return 3.

Example 2:

Input: nums = [2,4,8,2], maxOperations = 4
Output: 2
Explanation:
- Divide the bag with 8 balls into two bags of sizes 4 and 4. [2,4,8,2] -> [2,4,4,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,4,4,4,2] -> [2,2,2,4,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,2,2,4,4,2] -> [2,2,2,2,2,4,2].
- Divide the bag with 4 balls into two bags of sizes 2 and 2. [2,2,2,2,2,4,2] -> [2,2,2,2,2,2,2,2].
The bag with the most number of balls has 2 balls, so your penalty is 2, and you should return 2.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= maxOperations, nums[i] <= 109

Solutions (Rust)

1. Solution

impl Solution {
    pub fn minimum_size(nums: Vec<i32>, max_operations: i32) -> i32 {
        let mut low = 1;
        let mut high = *nums.iter().max().unwrap();

        while low < high {
            let mid = (low + high) / 2;
            let mut operations = 0;

            for x in &nums {
                operations += (x - 1) / mid;
            }

            if operations > max_operations {
                low = mid + 1;
            } else {
                high = mid;
            }
        }

        high
    }
}