Given an array nums
of distinct positive integers, return the number of tuples (a, b, c, d)
such that a * b = c * d
where a
, b
, c
, and d
are elements of nums
, and a != b != c != d
.
Input: nums = [2,3,4,6] Output: 8 Explanation: There are 8 valid tuples: (2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3) (3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
Input: nums = [1,2,4,5,10] Output: 16 Explanation: There are 16 valids tuples: (1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2) (2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1) (2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,4,5) (4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
Input: nums = [2,3,4,6,8,12] Output: 40
Input: nums = [2,3,5,7] Output: 0
1 <= nums.length <= 1000
1 <= nums[i] <= 104
- All elements in
nums
are distinct.
# @param {Integer[]} nums
# @return {Integer}
def tuple_same_product(nums)
counter = {}
counter.default = 0
(0...nums.size).each do |i|
(i + 1...nums.size).each do |j|
counter[nums[i] * nums[j]] += 1
end
end
counter.values.map { |c| c * (c - 1) * 4 }.sum
end
use std::collections::HashMap;
impl Solution {
pub fn tuple_same_product(nums: Vec<i32>) -> i32 {
let mut counter = HashMap::new();
for i in 0..nums.len() {
for j in (i + 1)..nums.len() {
*counter.entry(nums[i] * nums[j]).or_insert(0) += 1;
}
}
counter.values().map(|c| c * (c - 1) * 4).sum()
}
}